You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleOCR/tools/train.py

143 lines
4.7 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
import yaml
import paddle
import paddle.distributed as dist
paddle.manual_seed(2)
from ppocr.utils.logging import get_logger
from ppocr.data import build_dataloader
from ppocr.modeling import build_model, build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model
from ppocr.utils.utility import print_dict
import tools.program as program
dist.get_world_size()
def main(config, device, logger, vdl_writer):
# init dist environment
if config['Global']['distributed']:
dist.init_parallel_env()
global_config = config['Global']
# build dataloader
train_loader, train_info_dict = build_dataloader(
config['TRAIN'], device, global_config['distributed'], global_config)
if config['EVAL']:
eval_loader, _ = build_dataloader(config['EVAL'], device, False,
global_config)
else:
eval_loader = None
# build post process
post_process_class = build_post_process(config['PostProcess'],
global_config)
# build model
# for rec algorithm
if hasattr(post_process_class, 'character'):
config['Architecture']["Head"]['out_channels'] = len(
getattr(post_process_class, 'character'))
model = build_model(config['Architecture'])
if config['Global']['distributed']:
model = paddle.DataParallel(model)
# build optim
optimizer, lr_scheduler = build_optimizer(
config['Optimizer'],
epochs=config['Global']['epoch_num'],
step_each_epoch=len(train_loader),
parameters=model.parameters())
best_model_dict = init_model(config, model, logger, optimizer)
# build loss
loss_class = build_loss(config['Loss'])
# build metric
eval_class = build_metric(config['Metric'])
# start train
program.train(config, model, loss_class, optimizer, lr_scheduler,
train_loader, eval_loader, post_process_class, eval_class,
best_model_dict, logger, vdl_writer)
def test_reader(config, place, logger, global_config):
train_loader, _ = build_dataloader(
config['TRAIN'], place, global_config=global_config)
import time
starttime = time.time()
count = 0
try:
for data in train_loader:
count += 1
if count % 1 == 0:
batch_time = time.time() - starttime
starttime = time.time()
logger.info("reader: {}, {}, {}".format(
count, len(data[0]), batch_time))
except Exception as e:
import traceback
traceback.print_exc()
logger.info(e)
logger.info("finish reader: {}, Success!".format(count))
def dis_main():
device, config = program.preprocess()
config['Global']['distributed'] = dist.get_world_size() != 1
paddle.disable_static(device)
# save_config
os.makedirs(config['Global']['save_model_dir'], exist_ok=True)
with open(
os.path.join(config['Global']['save_model_dir'], 'config.yml'),
'w') as f:
yaml.dump(dict(config), f, default_flow_style=False, sort_keys=False)
logger = get_logger(
log_file='{}/train.log'.format(config['Global']['save_model_dir']))
if config['Global']['use_visualdl']:
from visualdl import LogWriter
vdl_writer = LogWriter(logdir=config['Global']['save_model_dir'])
else:
vdl_writer = None
print_dict(config, logger)
logger.info('train with paddle {} and device {}'.format(paddle.__version__,
device))
main(config, device, logger, vdl_writer)
# test_reader(config, device, logger, config['Global'])
if __name__ == '__main__':
# main()
# dist.spawn(dis_main, nprocs=2, selelcted_gpus='6,7')
dis_main()