add east & sast

release/2.0-rc1-0
MissPenguin 4 years ago
parent 8a5566c974
commit 021c1132a9

@ -1,8 +1,7 @@
include LICENSE.txt
include README.md
recursive-include ppocr/utils *.txt utility.py character.py check.py
recursive-include ppocr/data/det *.py
recursive-include ppocr/utils *.txt utility.py logging.py
recursive-include ppocr/data/ *.py
recursive-include ppocr/postprocess *.py
recursive-include ppocr/postprocess/lanms *.*
recursive-include tools/infer *.py
recursive-include tools/infer *.py

@ -0,0 +1,111 @@
Global:
use_gpu: true
epoch_num: 10000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/east_mv3/
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path: ./output/det_east/predicts_east.txt
Architecture:
model_type: det
algorithm: EAST
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
Neck:
name: EASTFPN
model_name: small
Head:
name: EASTHead
model_name: small
Loss:
name: EASTLoss
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
# name: Cosine
learning_rate: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: EASTPostProcess
score_thresh: 0.8
cover_thresh: 0.1
nms_thresh: 0.2
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- EASTProcessTrain:
image_shape: [512, 512]
background_ratio: 0.125
min_crop_side_ratio: 0.1
min_text_size: 10
- KeepKeys:
keep_keys: ['image', 'score_map', 'geo_map', 'training_mask'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 16
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_side_len: 2400
limit_type: max
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2

@ -0,0 +1,110 @@
Global:
use_gpu: true
epoch_num: 10000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/east_r50_vd/
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_pretrained/
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path: ./output/det_east/predicts_east.txt
Architecture:
model_type: det
algorithm: EAST
Transform:
Backbone:
name: ResNet
layers: 50
Neck:
name: EASTFPN
model_name: large
Head:
name: EASTHead
model_name: large
Loss:
name: EASTLoss
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
# name: Cosine
learning_rate: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: EASTPostProcess
score_thresh: 0.8
cover_thresh: 0.1
nms_thresh: 0.2
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- EASTProcessTrain:
image_shape: [512, 512]
background_ratio: 0.125
min_crop_side_ratio: 0.1
min_text_size: 10
- KeepKeys:
keep_keys: ['image', 'score_map', 'geo_map', 'training_mask'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_side_len: 2400
limit_type: max
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2

@ -0,0 +1,110 @@
Global:
use_gpu: true
epoch_num: 5000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/sast_r50_vd_ic15/
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path: ./output/sast_r50_vd_ic15/predicts_sast.txt
Architecture:
model_type: det
algorithm: SAST
Transform:
Backbone:
name: ResNet_SAST
layers: 50
Neck:
name: SASTFPN
with_cab: True
Head:
name: SASTHead
Loss:
name: SASTLoss
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
# name: Cosine
learning_rate: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: SASTPostProcess
score_thresh: 0.5
sample_pts_num: 2
nms_thresh: 0.2
expand_scale: 1.0
shrink_ratio_of_width: 0.3
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_path: [./train_data/art_latin_icdar_14pt/train_no_tt_test/train_label_json.txt, ./train_data/total_text_icdar_14pt/train_label_json.txt]
data_ratio_list: [0.5, 0.5]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- SASTProcessTrain:
image_shape: [512, 512]
min_crop_side_ratio: 0.3
min_crop_size: 24
min_text_size: 4
max_text_size: 512
- KeepKeys:
keep_keys: ['image', 'score_map', 'border_map', 'training_mask', 'tvo_map', 'tco_map'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 4
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
resize_long: 1536
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2

@ -0,0 +1,109 @@
Global:
use_gpu: true
epoch_num: 5000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/sast_r50_vd_tt/
save_epoch_step: 1000
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img:
save_res_path: ./output/sast_r50_vd_tt/predicts_sast.txt
Architecture:
model_type: det
algorithm: SAST
Transform:
Backbone:
name: ResNet_SAST
layers: 50
Neck:
name: SASTFPN
with_cab: True
Head:
name: SASTHead
Loss:
name: SASTLoss
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
# name: Cosine
learning_rate: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: SASTPostProcess
score_thresh: 0.5
sample_pts_num: 6
nms_thresh: 0.2
expand_scale: 1.2
shrink_ratio_of_width: 0.2
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
label_file_list: [./train_data/icdar2013/train_label_json.txt, ./train_data/icdar2015/train_label_json.txt, ./train_data/icdar17_mlt_latin/train_label_json.txt, ./train_data/coco_text_icdar_4pts/train_label_json.txt]
ratio_list: [0.1, 0.45, 0.3, 0.15]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- SASTProcessTrain:
image_shape: [512, 512]
min_crop_side_ratio: 0.3
min_crop_size: 24
min_text_size: 4
max_text_size: 512
- KeepKeys:
keep_keys: ['image', 'score_map', 'border_map', 'training_mask', 'tvo_map', 'tco_map'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 4
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_list:
- ./train_data/total_text_icdar_14pt/test_label_json.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
resize_long: 768
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2

@ -15,7 +15,7 @@ Global:
use_visualdl: False
infer_img:
# for data or label process
character_dict_path: ppocr/utils/ic15_dict.txt
character_dict_path: ppocr/utils/dict/ic15_dict.txt
character_type: ch
max_text_length: 25
infer_mode: False

@ -15,7 +15,7 @@ Global:
use_visualdl: False
infer_img:
# for data or label process
character_dict_path: ppocr/utils/french_dict.txt
character_dict_path: ppocr/utils/dict/french_dict.txt
character_type: french
max_text_length: 25
infer_mode: False

@ -15,7 +15,7 @@ Global:
use_visualdl: False
infer_img:
# for data or label process
character_dict_path: ppocr/utils/german_dict.txt
character_dict_path: ppocr/utils/dict/german_dict.txt
character_type: german
max_text_length: 25
infer_mode: False

@ -15,7 +15,7 @@ Global:
use_visualdl: False
infer_img:
# for data or label process
character_dict_path: ppocr/utils/japan_dict.txt
character_dict_path: ppocr/utils/dict/japan_dict.txt
character_type: japan
max_text_length: 25
infer_mode: False

@ -15,7 +15,7 @@ Global:
use_visualdl: False
infer_img:
# for data or label process
character_dict_path: ppocr/utils/korean_dict.txt
character_dict_path: ppocr/utils/dict/korean_dict.txt
character_type: korean
max_text_length: 25
infer_mode: False

@ -261,6 +261,61 @@ im_show.save('result.jpg')
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_dir} --rec_model_dir {your_rec_model_dir} --rec_char_dict_path {your_rec_char_dict_path} --cls_model_dir {your_cls_model_dir} --use_angle_cls true --cls true
```
### 使用网络图片或者numpy数组作为输入
1. 网络图片
代码使用
```python
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语可以通过修改lang参数进行切换
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = 'http://n.sinaimg.cn/ent/transform/w630h933/20171222/o111-fypvuqf1838418.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
print(line)
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
命令行模式
```bash
paddleocr --image_dir http://n.sinaimg.cn/ent/transform/w630h933/20171222/o111-fypvuqf1838418.jpg --use_angle_cls=true
```
2. numpy数组
仅通过代码使用时支持numpy数组作为输入
```python
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语可以通过修改lang参数进行切换
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
img = cv2.imread(img_path)
# img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY), 如果你自己训练的模型支持灰度图,可以将这句话的注释取消
result = ocr.ocr(img_path, cls=True)
for line in result:
print(line)
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
## 参数说明
| 字段 | 说明 | 默认值 |
@ -285,6 +340,7 @@ paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_
| max_text_length | 识别算法能识别的最大文字长度 | 25 |
| rec_char_dict_path | 识别模型字典路径当rec_model_dir使用方式2传参时需要修改为自己的字典路径 | ./ppocr/utils/ppocr_keys_v1.txt |
| use_space_char | 是否识别空格 | TRUE |
| drop_score | 对输出按照分数(来自于识别模型)进行过滤,低于此分数的不返回 | 0.5 |
| use_angle_cls | 是否加载分类模型 | FALSE |
| cls_model_dir | 分类模型所在文件夹。传参方式有两种1. None: 自动下载内置模型到 `~/.paddleocr/cls`2.自己转换好的inference模型路径模型路径下必须包含model和params文件 | None |
| cls_image_shape | 分类算法的输入图片尺寸 | "3, 48, 192" |
@ -295,4 +351,4 @@ paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_
| lang | 模型语言类型,目前支持 中文(ch)和英文(en) | ch |
| det | 前向时使用启动检测 | TRUE |
| rec | 前向时是否启动识别 | TRUE |
| cls | 前向时是否启动分类 | FALSE |
| cls | 前向时是否启动分类 (命令行模式下使用use_angle_cls控制前向是否启动分类) | FALSE |

@ -271,6 +271,59 @@ im_show.save('result.jpg')
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_dir} --rec_model_dir {your_rec_model_dir} --rec_char_dict_path {your_rec_char_dict_path} --cls_model_dir {your_cls_model_dir} --use_angle_cls true --cls true
```
### Use web images or numpy array as input
1. Web image
Use by code
```python
from paddleocr import PaddleOCR, draw_ocr
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = 'http://n.sinaimg.cn/ent/transform/w630h933/20171222/o111-fypvuqf1838418.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
print(line)
# show result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
Use by command line
```bash
paddleocr --image_dir http://n.sinaimg.cn/ent/transform/w630h933/20171222/o111-fypvuqf1838418.jpg --use_angle_cls=true
```
2. Numpy array
Support numpy array as input only when used by code
```python
from paddleocr import PaddleOCR, draw_ocr
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
img = cv2.imread(img_path)
# img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY), If your own training model supports grayscale images, you can uncomment this line
result = ocr.ocr(img_path, cls=True)
for line in result:
print(line)
# show result
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
## Parameter Description
| Parameter | Description | Default value |
@ -295,6 +348,7 @@ paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_
| max_text_length | The maximum text length that the recognition algorithm can recognize | 25 |
| rec_char_dict_path | the alphabet path which needs to be modified to your own path when `rec_model_Name` use mode 2 | ./ppocr/utils/ppocr_keys_v1.txt |
| use_space_char | Whether to recognize spaces | TRUE |
| drop_score | Filter the output by score (from the recognition model), and those below this score will not be returned | 0.5 |
| use_angle_cls | Whether to load classification model | FALSE |
| cls_model_dir | the classification inference model folder. There are two ways to transfer parameters, 1. None: Automatically download the built-in model to `~/.paddleocr/cls`; 2. The path of the inference model converted by yourself, the model and params files must be included in the model path | None |
| cls_image_shape | image shape of classification algorithm | "3,48,192" |
@ -305,4 +359,4 @@ paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_
| lang | The support language, now only Chinese(ch)、English(en)、French(french)、German(german)、Korean(korean)、Japanese(japan) are supported | ch |
| det | Enable detction when `ppocr.ocr` func exec | TRUE |
| rec | Enable recognition when `ppocr.ocr` func exec | TRUE |
| cls | Enable classification when `ppocr.ocr` func exec | FALSE |
| cls | Enable classification when `ppocr.ocr` func exec((Use use_angle_cls in command line mode to control whether to start classification in the forward direction) | FALSE |

File diff suppressed because it is too large Load Diff

@ -26,6 +26,9 @@ from .randaugment import RandAugment
from .operators import *
from .label_ops import *
from .east_process import *
from .sast_process import *
def transform(data, ops=None):
""" transform """

File diff suppressed because it is too large Load Diff

@ -52,6 +52,7 @@ class DetLabelEncode(object):
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = self.expand_points_num(boxes)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
@ -70,6 +71,17 @@ class DetLabelEncode(object):
rect[3] = pts[np.argmax(diff)]
return rect
def expand_points_num(self, boxes):
max_points_num = 0
for box in boxes:
if len(box) > max_points_num:
max_points_num = len(box)
ex_boxes = []
for box in boxes:
ex_box = box + [box[-1]] * (max_points_num - len(box))
ex_boxes.append(ex_box)
return ex_boxes
class BaseRecLabelEncode(object):
""" Convert between text-label and text-index """
@ -79,7 +91,9 @@ class BaseRecLabelEncode(object):
character_dict_path=None,
character_type='ch',
use_space_char=False):
support_character_type = ['ch', 'en', 'en_sensitive']
support_character_type = [
'ch', 'en', 'en_sensitive', 'french', 'german', 'japan', 'korean'
]
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
support_character_type, self.character_str)
@ -87,7 +101,7 @@ class BaseRecLabelEncode(object):
if character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
elif character_type == "ch":
elif character_type in ["ch", "french", "german", "japan", "korean"]:
self.character_str = ""
assert character_dict_path is not None, "character_dict_path should not be None when character_type is ch"
with open(character_dict_path, "rb") as fin:

@ -120,26 +120,37 @@ class DetResizeForTest(object):
if 'limit_side_len' in kwargs:
self.limit_side_len = kwargs['limit_side_len']
self.limit_type = kwargs.get('limit_type', 'min')
if 'resize_long' in kwargs:
self.resize_type = 2
self.resize_long = kwargs.get('resize_long', 960)
else:
self.limit_side_len = 736
self.limit_type = 'min'
def __call__(self, data):
img = data['image']
src_h, src_w, _ = img.shape
if self.resize_type == 0:
img, shape = self.resize_image_type0(img)
# img, shape = self.resize_image_type0(img)
img, [ratio_h, ratio_w] = self.resize_image_type0(img)
elif self.resize_type == 2:
img, [ratio_h, ratio_w] = self.resize_image_type2(img)
else:
img, shape = self.resize_image_type1(img)
# img, shape = self.resize_image_type1(img)
img, [ratio_h, ratio_w] = self.resize_image_type1(img)
data['image'] = img
data['shape'] = shape
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
return data
def resize_image_type1(self, img):
resize_h, resize_w = self.image_shape
ori_h, ori_w = img.shape[:2] # (h, w, c)
ratio_h = float(resize_h) / ori_h
ratio_w = float(resize_w) / ori_w
img = cv2.resize(img, (int(resize_w), int(resize_h)))
return img, np.array([ori_h, ori_w])
# return img, np.array([ori_h, ori_w])
return img, [ratio_h, ratio_w]
def resize_image_type0(self, img):
"""
@ -182,4 +193,31 @@ class DetResizeForTest(object):
except:
print(img.shape, resize_w, resize_h)
sys.exit(0)
return img, np.array([h, w])
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
# return img, np.array([h, w])
return img, [ratio_h, ratio_w]
def resize_image_type2(self, img):
h, w, _ = img.shape
resize_w = w
resize_h = h
# Fix the longer side
if resize_h > resize_w:
ratio = float(self.resize_long) / resize_h
else:
ratio = float(self.resize_long) / resize_w
resize_h = int(resize_h * ratio)
resize_w = int(resize_w * ratio)
max_stride = 128
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
img = cv2.resize(img, (int(resize_w), int(resize_h)))
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
return img, [ratio_h, ratio_w]

File diff suppressed because it is too large Load Diff

@ -18,6 +18,8 @@ import copy
def build_loss(config):
# det loss
from .det_db_loss import DBLoss
from .det_east_loss import EASTLoss
from .det_sast_loss import SASTLoss
# rec loss
from .rec_ctc_loss import CTCLoss
@ -25,7 +27,7 @@ def build_loss(config):
# cls loss
from .cls_loss import ClsLoss
support_dict = ['DBLoss', 'CTCLoss', 'ClsLoss']
support_dict = ['DBLoss', 'EASTLoss', 'SASTLoss', 'CTCLoss', 'ClsLoss']
config = copy.deepcopy(config)
module_name = config.pop('name')

@ -0,0 +1,63 @@
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
from .det_basic_loss import DiceLoss
class EASTLoss(nn.Layer):
"""
"""
def __init__(self,
eps=1e-6,
**kwargs):
super(EASTLoss, self).__init__()
self.dice_loss = DiceLoss(eps=eps)
def forward(self, predicts, labels):
l_score, l_geo, l_mask = labels[1:]
f_score = predicts['f_score']
f_geo = predicts['f_geo']
dice_loss = self.dice_loss(f_score, l_score, l_mask)
#smoooth_l1_loss
channels = 8
l_geo_split = paddle.split(
l_geo, num_or_sections=channels + 1, axis=1)
f_geo_split = paddle.split(f_geo, num_or_sections=channels, axis=1)
smooth_l1 = 0
for i in range(0, channels):
geo_diff = l_geo_split[i] - f_geo_split[i]
abs_geo_diff = paddle.abs(geo_diff)
smooth_l1_sign = paddle.less_than(abs_geo_diff, l_score)
smooth_l1_sign = paddle.cast(smooth_l1_sign, dtype='float32')
in_loss = abs_geo_diff * abs_geo_diff * smooth_l1_sign + \
(abs_geo_diff - 0.5) * (1.0 - smooth_l1_sign)
out_loss = l_geo_split[-1] / channels * in_loss * l_score
smooth_l1 += out_loss
smooth_l1_loss = paddle.mean(smooth_l1 * l_score)
dice_loss = dice_loss * 0.01
total_loss = dice_loss + smooth_l1_loss
losses = {"loss":total_loss, \
"dice_loss":dice_loss,\
"smooth_l1_loss":smooth_l1_loss}
return losses

@ -0,0 +1,121 @@
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
from .det_basic_loss import DiceLoss
import paddle.fluid as fluid
import numpy as np
class SASTLoss(nn.Layer):
"""
"""
def __init__(self,
eps=1e-6,
**kwargs):
super(SASTLoss, self).__init__()
self.dice_loss = DiceLoss(eps=eps)
def forward(self, predicts, labels):
"""
tcl_pos: N x 128 x 3
tcl_mask: N x 128 x 1
tcl_label: N x X list or LoDTensor
"""
f_score = predicts['f_score']
f_border = predicts['f_border']
f_tvo = predicts['f_tvo']
f_tco = predicts['f_tco']
l_score, l_border, l_mask, l_tvo, l_tco = labels[1:]
#score_loss
intersection = paddle.sum(f_score * l_score * l_mask)
union = paddle.sum(f_score * l_mask) + paddle.sum(l_score * l_mask)
score_loss = 1.0 - 2 * intersection / (union + 1e-5)
#border loss
l_border_split, l_border_norm = paddle.split(l_border, num_or_sections=[4, 1], axis=1)
f_border_split = f_border
border_ex_shape = l_border_norm.shape * np.array([1, 4, 1, 1])
l_border_norm_split = paddle.expand(x=l_border_norm, shape=border_ex_shape)
l_border_score = paddle.expand(x=l_score, shape=border_ex_shape)
l_border_mask = paddle.expand(x=l_mask, shape=border_ex_shape)
border_diff = l_border_split - f_border_split
abs_border_diff = paddle.abs(border_diff)
border_sign = abs_border_diff < 1.0
border_sign = paddle.cast(border_sign, dtype='float32')
border_sign.stop_gradient = True
border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \
(abs_border_diff - 0.5) * (1.0 - border_sign)
border_out_loss = l_border_norm_split * border_in_loss
border_loss = paddle.sum(border_out_loss * l_border_score * l_border_mask) / \
(paddle.sum(l_border_score * l_border_mask) + 1e-5)
#tvo_loss
l_tvo_split, l_tvo_norm = paddle.split(l_tvo, num_or_sections=[8, 1], axis=1)
f_tvo_split = f_tvo
tvo_ex_shape = l_tvo_norm.shape * np.array([1, 8, 1, 1])
l_tvo_norm_split = paddle.expand(x=l_tvo_norm, shape=tvo_ex_shape)
l_tvo_score = paddle.expand(x=l_score, shape=tvo_ex_shape)
l_tvo_mask = paddle.expand(x=l_mask, shape=tvo_ex_shape)
#
tvo_geo_diff = l_tvo_split - f_tvo_split
abs_tvo_geo_diff = paddle.abs(tvo_geo_diff)
tvo_sign = abs_tvo_geo_diff < 1.0
tvo_sign = paddle.cast(tvo_sign, dtype='float32')
tvo_sign.stop_gradient = True
tvo_in_loss = 0.5 * abs_tvo_geo_diff * abs_tvo_geo_diff * tvo_sign + \
(abs_tvo_geo_diff - 0.5) * (1.0 - tvo_sign)
tvo_out_loss = l_tvo_norm_split * tvo_in_loss
tvo_loss = paddle.sum(tvo_out_loss * l_tvo_score * l_tvo_mask) / \
(paddle.sum(l_tvo_score * l_tvo_mask) + 1e-5)
#tco_loss
l_tco_split, l_tco_norm = paddle.split(l_tco, num_or_sections=[2, 1], axis=1)
f_tco_split = f_tco
tco_ex_shape = l_tco_norm.shape * np.array([1, 2, 1, 1])
l_tco_norm_split = paddle.expand(x=l_tco_norm, shape=tco_ex_shape)
l_tco_score = paddle.expand(x=l_score, shape=tco_ex_shape)
l_tco_mask = paddle.expand(x=l_mask, shape=tco_ex_shape)
tco_geo_diff = l_tco_split - f_tco_split
abs_tco_geo_diff = paddle.abs(tco_geo_diff)
tco_sign = abs_tco_geo_diff < 1.0
tco_sign = paddle.cast(tco_sign, dtype='float32')
tco_sign.stop_gradient = True
tco_in_loss = 0.5 * abs_tco_geo_diff * abs_tco_geo_diff * tco_sign + \
(abs_tco_geo_diff - 0.5) * (1.0 - tco_sign)
tco_out_loss = l_tco_norm_split * tco_in_loss
tco_loss = paddle.sum(tco_out_loss * l_tco_score * l_tco_mask) / \
(paddle.sum(l_tco_score * l_tco_mask) + 1e-5)
# total loss
tvo_lw, tco_lw = 1.5, 1.5
score_lw, border_lw = 1.0, 1.0
total_loss = score_loss * score_lw + border_loss * border_lw + \
tvo_loss * tvo_lw + tco_loss * tco_lw
losses = {'loss':total_loss, "score_loss":score_loss,\
"border_loss":border_loss, 'tvo_loss':tvo_loss, 'tco_loss':tco_loss}
return losses

@ -19,6 +19,7 @@ def build_backbone(config, model_type):
if model_type == 'det':
from .det_mobilenet_v3 import MobileNetV3
from .det_resnet_vd import ResNet
from .det_resnet_vd_sast import ResNet_SAST
support_dict = ['MobileNetV3', 'ResNet', 'ResNet_SAST']
elif model_type == 'rec' or model_type == 'cls':
from .rec_mobilenet_v3 import MobileNetV3

File diff suppressed because it is too large Load Diff

@ -18,13 +18,15 @@ __all__ = ['build_head']
def build_head(config):
# det head
from .det_db_head import DBHead
from .det_east_head import EASTHead
from .det_sast_head import SASTHead
# rec head
from .rec_ctc_head import CTCHead
# cls head
from .cls_head import ClsHead
support_dict = ['DBHead', 'CTCHead', 'ClsHead']
support_dict = ['DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead']
module_name = config.pop('name')
assert module_name in support_dict, Exception('head only support {}'.format(

@ -0,0 +1,121 @@
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
if_act=True,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name="bn_" + name + "_scale"),
bias_attr=ParamAttr(name="bn_" + name + "_offset"),
moving_mean_name="bn_" + name + "_mean",
moving_variance_name="bn_" + name + "_variance")
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class EASTHead(nn.Layer):
"""
"""
def __init__(self, in_channels, model_name, **kwargs):
super(EASTHead, self).__init__()
self.model_name = model_name
if self.model_name == "large":
num_outputs = [128, 64, 1, 8]
else:
num_outputs = [64, 32, 1, 8]
self.det_conv1 = ConvBNLayer(
in_channels=in_channels,
out_channels=num_outputs[0],
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="det_head1")
self.det_conv2 = ConvBNLayer(
in_channels=num_outputs[0],
out_channels=num_outputs[1],
kernel_size=3,
stride=1,
padding=1,
if_act=True,
act='relu',
name="det_head2")
self.score_conv = ConvBNLayer(
in_channels=num_outputs[1],
out_channels=num_outputs[2],
kernel_size=1,
stride=1,
padding=0,
if_act=False,
act=None,
name="f_score")
self.geo_conv = ConvBNLayer(
in_channels=num_outputs[1],
out_channels=num_outputs[3],
kernel_size=1,
stride=1,
padding=0,
if_act=False,
act=None,
name="f_geo")
def forward(self, x):
f_det = self.det_conv1(x)
f_det = self.det_conv2(f_det)
f_score = self.score_conv(f_det)
f_score = F.sigmoid(f_score)
f_geo = self.geo_conv(f_det)
f_geo = (F.sigmoid(f_geo) - 0.5) * 2 * 800
pred = {'f_score': f_score, 'f_geo': f_geo}
return pred

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save