|
|
|
@ -13,9 +13,9 @@
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import os
|
|
|
|
|
import sys
|
|
|
|
|
__dir__ = os.path.dirname(__file__)
|
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
sys.path.append(__dir__)
|
|
|
|
|
sys.path.append(os.path.join(__dir__, '../..'))
|
|
|
|
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
|
|
|
|
|
|
|
|
|
import tools.infer.utility as utility
|
|
|
|
|
from ppocr.utils.utility import initial_logger
|
|
|
|
@ -33,14 +33,12 @@ class TextRecognizer(object):
|
|
|
|
|
def __init__(self, args):
|
|
|
|
|
self.predictor, self.input_tensor, self.output_tensors =\
|
|
|
|
|
utility.create_predictor(args, mode="rec")
|
|
|
|
|
image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
|
|
|
|
self.rec_image_shape = image_shape
|
|
|
|
|
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
|
|
|
|
self.character_type = args.rec_char_type
|
|
|
|
|
self.rec_batch_num = args.rec_batch_num
|
|
|
|
|
self.rec_algorithm = args.rec_algorithm
|
|
|
|
|
char_ops_params = {}
|
|
|
|
|
char_ops_params["character_type"] = args.rec_char_type
|
|
|
|
|
char_ops_params["character_dict_path"] = args.rec_char_dict_path
|
|
|
|
|
char_ops_params = {"character_type": args.rec_char_type,
|
|
|
|
|
"character_dict_path": args.rec_char_dict_path}
|
|
|
|
|
if self.rec_algorithm != "RARE":
|
|
|
|
|
char_ops_params['loss_type'] = 'ctc'
|
|
|
|
|
self.loss_type = 'ctc'
|
|
|
|
@ -51,16 +49,16 @@ class TextRecognizer(object):
|
|
|
|
|
|
|
|
|
|
def resize_norm_img(self, img, max_wh_ratio):
|
|
|
|
|
imgC, imgH, imgW = self.rec_image_shape
|
|
|
|
|
assert imgC == img.shape[2]
|
|
|
|
|
if self.character_type == "ch":
|
|
|
|
|
imgW = int(32 * max_wh_ratio)
|
|
|
|
|
h = img.shape[0]
|
|
|
|
|
w = img.shape[1]
|
|
|
|
|
imgW = int(math.ceil(32 * max_wh_ratio))
|
|
|
|
|
h, w = img.shape[:2]
|
|
|
|
|
ratio = w / float(h)
|
|
|
|
|
if math.ceil(imgH * ratio) > imgW:
|
|
|
|
|
resized_w = imgW
|
|
|
|
|
else:
|
|
|
|
|
resized_w = int(math.ceil(imgH * ratio))
|
|
|
|
|
resized_image = cv2.resize(img, (resized_w, imgH))
|
|
|
|
|
resized_image = cv2.resize(img, (resized_w, imgH), interpolation=cv2.INTER_CUBIC)
|
|
|
|
|
resized_image = resized_image.astype('float32')
|
|
|
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
|
|
|
resized_image -= 0.5
|
|
|
|
@ -71,7 +69,15 @@ class TextRecognizer(object):
|
|
|
|
|
|
|
|
|
|
def __call__(self, img_list):
|
|
|
|
|
img_num = len(img_list)
|
|
|
|
|
rec_res = []
|
|
|
|
|
# Calculate the aspect ratio of all text bars
|
|
|
|
|
width_list = []
|
|
|
|
|
for img in img_list:
|
|
|
|
|
width_list.append(img.shape[1] / float(img.shape[0]))
|
|
|
|
|
# Sorting can speed up the recognition process
|
|
|
|
|
indices = np.argsort(np.array(width_list))
|
|
|
|
|
|
|
|
|
|
# rec_res = []
|
|
|
|
|
rec_res = [['', 0.0]] * img_num
|
|
|
|
|
batch_num = self.rec_batch_num
|
|
|
|
|
predict_time = 0
|
|
|
|
|
for beg_img_no in range(0, img_num, batch_num):
|
|
|
|
@ -79,11 +85,13 @@ class TextRecognizer(object):
|
|
|
|
|
norm_img_batch = []
|
|
|
|
|
max_wh_ratio = 0
|
|
|
|
|
for ino in range(beg_img_no, end_img_no):
|
|
|
|
|
h, w = img_list[ino].shape[0:2]
|
|
|
|
|
# h, w = img_list[ino].shape[0:2]
|
|
|
|
|
h, w = img_list[indices[ino]].shape[0:2]
|
|
|
|
|
wh_ratio = w * 1.0 / h
|
|
|
|
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
|
|
|
|
for ino in range(beg_img_no, end_img_no):
|
|
|
|
|
norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
|
|
|
|
|
# norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
|
|
|
|
|
norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
|
|
|
|
|
norm_img = norm_img[np.newaxis, :]
|
|
|
|
|
norm_img_batch.append(norm_img)
|
|
|
|
|
norm_img_batch = np.concatenate(norm_img_batch)
|
|
|
|
@ -111,7 +119,8 @@ class TextRecognizer(object):
|
|
|
|
|
blank = probs.shape[1]
|
|
|
|
|
valid_ind = np.where(ind != (blank - 1))[0]
|
|
|
|
|
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
|
|
|
|
rec_res.append([preds_text, score])
|
|
|
|
|
# rec_res.append([preds_text, score])
|
|
|
|
|
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
|
|
|
|
|
else:
|
|
|
|
|
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
|
|
|
|
|
predict_batch = self.output_tensors[1].copy_to_cpu()
|
|
|
|
@ -126,19 +135,19 @@ class TextRecognizer(object):
|
|
|
|
|
preds = rec_idx_batch[rno, 1:end_pos[1]]
|
|
|
|
|
score = np.mean(predict_batch[rno, 1:end_pos[1]])
|
|
|
|
|
preds_text = self.char_ops.decode(preds)
|
|
|
|
|
rec_res.append([preds_text, score])
|
|
|
|
|
# rec_res.append([preds_text, score])
|
|
|
|
|
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
|
|
|
|
|
|
|
|
|
|
return rec_res, predict_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
args = utility.parse_args()
|
|
|
|
|
def main(args):
|
|
|
|
|
image_file_list = get_image_file_list(args.image_dir)
|
|
|
|
|
text_recognizer = TextRecognizer(args)
|
|
|
|
|
valid_image_file_list = []
|
|
|
|
|
img_list = []
|
|
|
|
|
for image_file in image_file_list:
|
|
|
|
|
img = cv2.imread(image_file)
|
|
|
|
|
img = cv2.imread(image_file, cv2.IMREAD_COLOR)
|
|
|
|
|
if img is None:
|
|
|
|
|
logger.info("error in loading image:{}".format(image_file))
|
|
|
|
|
continue
|
|
|
|
@ -159,3 +168,7 @@ if __name__ == "__main__":
|
|
|
|
|
print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
|
|
|
|
|
print("Total predict time for %d images:%.3f" %
|
|
|
|
|
(len(img_list), predict_time))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
main(utility.parse_args())
|
|
|
|
|