@ -19,17 +19,17 @@ On the ICDAR2015 dataset, the text detection result is as follows:
|Model|Backbone|precision|recall|Hmean|Download link|
|-|-|-|-|-|-|
|EAST|ResNet50_vd||||[Coming soon]( )|
|EAST|MobileNetV3||||[Coming soon]( )|
|DB|ResNet50_vd||||[Coming soon]( )|
|DB|MobileNetV3||||[Coming soon]( )|
|SAST|ResNet50_vd||||[Coming soon]( )|
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](link )|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](link )|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](link )|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](link )|
|SAST|ResNet50_vd|92.18%|82.96%|87.33%|[Download link](link )|
On Total-Text dataset, the text detection result is as follows:
|Model|Backbone|precision|recall|Hmean|Download link|
|-|-|-|-|-|-|
|SAST|ResNet50_vd||||[Coming soon]( )|
|SAST|ResNet50_vd|88.74%|79.80%|84.03%|[Download link](link )|
**Note: ** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from [Baidu Drive ](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw ) (download code: 2bpi).
@ -42,19 +42,19 @@ PaddleOCR open-source text recognition algorithms list:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x ] RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [x ] SRN([paper](https://arxiv.org/abs/2003.12294))(Baidu Self-Research)
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1)) coming soon
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))(Baidu Self-Research) coming soon
Refer to [DTRB ](https://arxiv.org/abs/1904.01906 ), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
|Model|Backbone|Avg Accuracy|Module combination|Download link|
|-|-|-|-|-|
|Rosetta|Resnet34_vd||rec_r34_vd_none_none_ctc|[Coming soon]( )|
|Rosetta|MobileNetV3||rec_mv3_none_none_ctc|[Coming soon]( )|
|CRNN|Resnet34_vd||rec_r34_vd_none_bilstm_ctc|[Coming soon]( )|
|CRNN|MobileNetV3||rec_mv3_none_bilstm_ctc|[Coming soon]( )|
|STAR-Net|Resnet34_vd||rec_r34_vd_tps_bilstm_ctc|[Coming soon]( )|
|STAR-Net|MobileNetV3||rec_mv3_tps_bilstm_ctc|[Coming soon]( )|
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar )|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar )|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar )|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar )|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar )|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar )|
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction ](./doc/doc_en/recognition_en.md )