commit
45f90e9431
@ -0,0 +1,15 @@
|
||||
{
|
||||
"modules_info": {
|
||||
"ocr_cls": {
|
||||
"init_args": {
|
||||
"version": "1.0.0",
|
||||
"use_gpu": true
|
||||
},
|
||||
"predict_args": {
|
||||
}
|
||||
}
|
||||
},
|
||||
"port": 8866,
|
||||
"use_multiprocess": false,
|
||||
"workers": 2
|
||||
}
|
@ -0,0 +1,121 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import sys
|
||||
sys.path.insert(0, ".")
|
||||
|
||||
from paddlehub.common.logger import logger
|
||||
from paddlehub.module.module import moduleinfo, runnable, serving
|
||||
import cv2
|
||||
import paddlehub as hub
|
||||
|
||||
from tools.infer.utility import base64_to_cv2
|
||||
from tools.infer.predict_cls import TextClassifier
|
||||
|
||||
|
||||
@moduleinfo(
|
||||
name="ocr_cls",
|
||||
version="1.0.0",
|
||||
summary="ocr recognition service",
|
||||
author="paddle-dev",
|
||||
author_email="paddle-dev@baidu.com",
|
||||
type="cv/text_recognition")
|
||||
class OCRCls(hub.Module):
|
||||
def _initialize(self, use_gpu=False, enable_mkldnn=False):
|
||||
"""
|
||||
initialize with the necessary elements
|
||||
"""
|
||||
from ocr_cls.params import read_params
|
||||
cfg = read_params()
|
||||
|
||||
cfg.use_gpu = use_gpu
|
||||
if use_gpu:
|
||||
try:
|
||||
_places = os.environ["CUDA_VISIBLE_DEVICES"]
|
||||
int(_places[0])
|
||||
print("use gpu: ", use_gpu)
|
||||
print("CUDA_VISIBLE_DEVICES: ", _places)
|
||||
cfg.gpu_mem = 8000
|
||||
except:
|
||||
raise RuntimeError(
|
||||
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
|
||||
)
|
||||
cfg.ir_optim = True
|
||||
cfg.enable_mkldnn = enable_mkldnn
|
||||
|
||||
self.text_classifier = TextClassifier(cfg)
|
||||
|
||||
def read_images(self, paths=[]):
|
||||
images = []
|
||||
for img_path in paths:
|
||||
assert os.path.isfile(
|
||||
img_path), "The {} isn't a valid file.".format(img_path)
|
||||
img = cv2.imread(img_path)
|
||||
if img is None:
|
||||
logger.info("error in loading image:{}".format(img_path))
|
||||
continue
|
||||
images.append(img)
|
||||
return images
|
||||
|
||||
def predict(self, images=[], paths=[]):
|
||||
"""
|
||||
Get the text angle in the predicted images.
|
||||
Args:
|
||||
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
|
||||
paths (list[str]): The paths of images. If paths not images
|
||||
Returns:
|
||||
res (list): The result of text detection box and save path of images.
|
||||
"""
|
||||
|
||||
if images != [] and isinstance(images, list) and paths == []:
|
||||
predicted_data = images
|
||||
elif images == [] and isinstance(paths, list) and paths != []:
|
||||
predicted_data = self.read_images(paths)
|
||||
else:
|
||||
raise TypeError("The input data is inconsistent with expectations.")
|
||||
|
||||
assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
|
||||
|
||||
img_list = []
|
||||
for img in predicted_data:
|
||||
if img is None:
|
||||
continue
|
||||
img_list.append(img)
|
||||
|
||||
rec_res_final = []
|
||||
try:
|
||||
img_list, cls_res, predict_time = self.text_classifier(img_list)
|
||||
for dno in range(len(cls_res)):
|
||||
angle, score = cls_res[dno]
|
||||
rec_res_final.append({
|
||||
'angle': angle,
|
||||
'confidence': float(score),
|
||||
})
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return [[]]
|
||||
|
||||
return [rec_res_final]
|
||||
|
||||
@serving
|
||||
def serving_method(self, images, **kwargs):
|
||||
"""
|
||||
Run as a service.
|
||||
"""
|
||||
images_decode = [base64_to_cv2(image) for image in images]
|
||||
results = self.predict(images_decode, **kwargs)
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
ocr = OCRCls()
|
||||
image_path = [
|
||||
'./doc/imgs_words/ch/word_1.jpg',
|
||||
'./doc/imgs_words/ch/word_2.jpg',
|
||||
'./doc/imgs_words/ch/word_3.jpg',
|
||||
]
|
||||
res = ocr.predict(paths=image_path)
|
||||
print(res)
|
@ -0,0 +1,24 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
class Config(object):
|
||||
pass
|
||||
|
||||
|
||||
def read_params():
|
||||
cfg = Config()
|
||||
|
||||
#params for text classifier
|
||||
cfg.cls_model_dir = "./inference/ch_ppocr_mobile_v1.1_cls_infer/"
|
||||
cfg.cls_image_shape = "3, 48, 192"
|
||||
cfg.label_list = ['0', '180']
|
||||
cfg.cls_batch_num = 30
|
||||
cfg.cls_thresh = 0.9
|
||||
|
||||
cfg.use_zero_copy_run = False
|
||||
cfg.use_pdserving = False
|
||||
|
||||
return cfg
|
Loading…
Reference in new issue