updata readme

release/1.1
dyning 5 years ago
parent 51e0dd4a0f
commit a3124696b0

File diff suppressed because it is too large Load Diff

@ -0,0 +1,81 @@
# 中文OCR模型快速开始
## 1.环境配置
请先参考[快速安装](./installation.md)配置PaddleOCR运行环境。
## 2.inference模型下载
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
|-|-|-|-|-|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
*windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下*
复制上表中的检测和识别的`inference模型`下载地址,并解压
```
mkdir inference && cd inference
# 下载检测模型并解压
wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
# 下载识别模型并解压
wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
cd ..
```
以超轻量级模型为例:
```
mkdir inference && cd inference
# 下载超轻量级中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
# 下载超轻量级中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
cd ..
```
解压完毕后应有如下文件结构:
```
|-inference
|-ch_rec_mv3_crnn
|- model
|- params
|-ch_det_mv3_db
|- model
|- params
...
```
## 3.单张图像或者图像集合预测
以下代码实现了文本检测、识别串联推理在执行预测时需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
```bash
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
# 预测image_dir指定的图像集合
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
# 如果想使用CPU进行预测需设置use_gpu参数为False
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```
通用中文OCR模型的体验可以按照上述步骤下载相应的模型并且更新相关的参数示例如下
```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
```
带空格的通用中文OCR模型的体验可以按照上述步骤下载相应的模型并且更新相关的参数示例如下
```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_12.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn_enhance/"
```
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./inference.md)。

@ -0,0 +1,55 @@
# 参考文献
```
1. EAST:
@inproceedings{zhou2017east,
title={EAST: an efficient and accurate scene text detector},
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={5551--5560},
year={2017}
}
2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
}
3. DTRB:
@inproceedings{baek2019wrong,
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={4715--4723},
year={2019}
}
4. SAST:
@inproceedings{wang2019single,
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
pages={1277--1285},
year={2019}
}
5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
year={2020}
}
6. end2end-psl:
@inproceedings{sun2019chinese,
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9086--9095},
year={2019}
}
```

@ -0,0 +1,31 @@
# 效果展示
- [超轻量级中文OCR效果展示](#超轻量级中文OCR)
- [通用中文OCR效果展示](#通用中文OCR)
- [支持空格的中文OCR效果展示](#支持空格的中文OCR)
<a name="超轻量级中文OCR"></a>
## 超轻量级中文OCR效果展示
![](../imgs_results/1.jpg)
![](../imgs_results/7.jpg)
![](../imgs_results/12.jpg)
![](../imgs_results/4.jpg)
![](../imgs_results/6.jpg)
![](../imgs_results/9.jpg)
![](../imgs_results/16.png)
![](../imgs_results/22.jpg)
<a name="通用中文OCR"></a>
## 通用中文OCR效果展示
![](../imgs_results/chinese_db_crnn_server/11.jpg)
![](../imgs_results/chinese_db_crnn_server/2.jpg)
![](../imgs_results/chinese_db_crnn_server/8.jpg)
<a name="支持空格的中文OCR"></a>
## 支持空格的中文OCR效果展示
### 轻量级模型
![](../imgs_results/img_11.jpg)
### 通用模型
![](../imgs_results/chinese_db_crnn_server/en_paper.jpg)
Loading…
Cancel
Save