|
|
|
@ -203,9 +203,9 @@ class GridGenerator(nn.Layer):
|
|
|
|
|
def build_C_paddle(self):
|
|
|
|
|
""" Return coordinates of fiducial points in I_r; C """
|
|
|
|
|
F = self.F
|
|
|
|
|
ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2))
|
|
|
|
|
ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)])
|
|
|
|
|
ctrl_pts_y_bottom = paddle.ones([int(F / 2)])
|
|
|
|
|
ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64')
|
|
|
|
|
ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64')
|
|
|
|
|
ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64')
|
|
|
|
|
ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
|
|
|
|
|
ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
|
|
|
|
|
C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0)
|
|
|
|
@ -213,12 +213,16 @@ class GridGenerator(nn.Layer):
|
|
|
|
|
|
|
|
|
|
def build_P_paddle(self, I_r_size):
|
|
|
|
|
I_r_height, I_r_width = I_r_size
|
|
|
|
|
I_r_grid_x = (
|
|
|
|
|
paddle.arange(-I_r_width, I_r_width, 2).astype('float32') + 1.0
|
|
|
|
|
) / I_r_width # self.I_r_width
|
|
|
|
|
I_r_grid_y = (
|
|
|
|
|
paddle.arange(-I_r_height, I_r_height, 2).astype('float32') + 1.0
|
|
|
|
|
) / I_r_height # self.I_r_height
|
|
|
|
|
I_r_grid_x = paddle.divide(
|
|
|
|
|
paddle.arange(
|
|
|
|
|
-I_r_width, I_r_width, 2, dtype='float64') + 1.0,
|
|
|
|
|
paddle.to_tensor(
|
|
|
|
|
I_r_width, dtype='float64'))
|
|
|
|
|
I_r_grid_y = paddle.divide(
|
|
|
|
|
paddle.arange(
|
|
|
|
|
-I_r_height, I_r_height, 2, dtype='float64') + 1.0,
|
|
|
|
|
paddle.to_tensor(
|
|
|
|
|
I_r_height, dtype='float64')) # self.I_r_height
|
|
|
|
|
# P: self.I_r_width x self.I_r_height x 2
|
|
|
|
|
P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
|
|
|
|
|
P = paddle.transpose(P, perm=[1, 0, 2])
|
|
|
|
@ -228,7 +232,7 @@ class GridGenerator(nn.Layer):
|
|
|
|
|
def build_inv_delta_C_paddle(self, C):
|
|
|
|
|
""" Return inv_delta_C which is needed to calculate T """
|
|
|
|
|
F = self.F
|
|
|
|
|
hat_C = paddle.zeros((F, F), dtype='float32') # F x F
|
|
|
|
|
hat_C = paddle.zeros((F, F), dtype='float64') # F x F
|
|
|
|
|
for i in range(0, F):
|
|
|
|
|
for j in range(i, F):
|
|
|
|
|
if i == j:
|
|
|
|
@ -241,13 +245,21 @@ class GridGenerator(nn.Layer):
|
|
|
|
|
delta_C = paddle.concat( # F+3 x F+3
|
|
|
|
|
[
|
|
|
|
|
paddle.concat(
|
|
|
|
|
[paddle.ones((F, 1)), C, hat_C], axis=1), # F x F+3
|
|
|
|
|
[paddle.ones(
|
|
|
|
|
(F, 1), dtype='float64'), C, hat_C], axis=1), # F x F+3
|
|
|
|
|
paddle.concat(
|
|
|
|
|
[paddle.zeros((2, 3)), paddle.transpose(
|
|
|
|
|
C, perm=[1, 0])],
|
|
|
|
|
[
|
|
|
|
|
paddle.zeros(
|
|
|
|
|
(2, 3), dtype='float64'), paddle.transpose(
|
|
|
|
|
C, perm=[1, 0])
|
|
|
|
|
],
|
|
|
|
|
axis=1), # 2 x F+3
|
|
|
|
|
paddle.concat(
|
|
|
|
|
[paddle.zeros((1, 3)), paddle.ones((1, F))],
|
|
|
|
|
[
|
|
|
|
|
paddle.zeros(
|
|
|
|
|
(1, 3), dtype='float64'), paddle.ones(
|
|
|
|
|
(1, F), dtype='float64')
|
|
|
|
|
],
|
|
|
|
|
axis=1) # 1 x F+3
|
|
|
|
|
],
|
|
|
|
|
axis=0)
|
|
|
|
@ -268,7 +280,9 @@ class GridGenerator(nn.Layer):
|
|
|
|
|
# rbf: n x F
|
|
|
|
|
rbf = paddle.multiply(
|
|
|
|
|
paddle.square(rbf_norm), paddle.log(rbf_norm + eps))
|
|
|
|
|
P_hat = paddle.concat([paddle.ones((n, 1)), P, rbf], axis=1)
|
|
|
|
|
P_hat = paddle.concat(
|
|
|
|
|
[paddle.ones(
|
|
|
|
|
(n, 1), dtype='float64'), P, rbf], axis=1)
|
|
|
|
|
return P_hat # n x F+3
|
|
|
|
|
|
|
|
|
|
def get_expand_tensor(self, batch_C_prime):
|
|
|
|
|