|
|
|
@ -127,44 +127,44 @@ public class HelloWorld {
|
|
|
|
|
templeConfig.setClassifier(Classifier.DNN);
|
|
|
|
|
templeConfig.isShowLog(true);
|
|
|
|
|
templeConfig.init(StudyPattern.Accuracy_Pattern, true, 640, 640, 4);
|
|
|
|
|
// ModelParameter modelParameter2 = JSON.parseObject(ModelData.DATA2, ModelParameter.class);
|
|
|
|
|
// templeConfig.insertModel(modelParameter2);
|
|
|
|
|
ModelParameter modelParameter2 = JSON.parseObject(ModelData.DATA3, ModelParameter.class);
|
|
|
|
|
templeConfig.insertModel(modelParameter2);
|
|
|
|
|
Operation operation = new Operation(templeConfig);
|
|
|
|
|
//a b c d 物品 e是背景
|
|
|
|
|
// 一阶段
|
|
|
|
|
for (int j = 0; j < 1; j++) {
|
|
|
|
|
for (int i = 1; i < 1900; i++) {//一阶段
|
|
|
|
|
System.out.println("study1===================" + i);
|
|
|
|
|
//读取本地URL地址图片,并转化成矩阵
|
|
|
|
|
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
|
Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg");
|
|
|
|
|
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
|
|
|
|
|
Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg");
|
|
|
|
|
//将图像矩阵和标注加入进行学习,Accuracy_Pattern 模式 进行第二次学习
|
|
|
|
|
//第二次学习的时候,第三个参数必须是 true
|
|
|
|
|
operation.learning(a, 1, false);
|
|
|
|
|
operation.learning(b, 2, false);
|
|
|
|
|
operation.learning(c, 3, false);
|
|
|
|
|
operation.learning(d, 4, false);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// for (int j = 0; j < 1; j++) {
|
|
|
|
|
// for (int i = 1; i < 1900; i++) {//一阶段
|
|
|
|
|
// System.out.println("study1===================" + i);
|
|
|
|
|
// //读取本地URL地址图片,并转化成矩阵
|
|
|
|
|
// Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
|
// Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg");
|
|
|
|
|
// Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
|
|
|
|
|
// Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg");
|
|
|
|
|
// //将图像矩阵和标注加入进行学习,Accuracy_Pattern 模式 进行第二次学习
|
|
|
|
|
// //第二次学习的时候,第三个参数必须是 true
|
|
|
|
|
// operation.learning(a, 1, false);
|
|
|
|
|
// operation.learning(b, 2, false);
|
|
|
|
|
// operation.learning(c, 3, false);
|
|
|
|
|
// operation.learning(d, 4, false);
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
//二阶段
|
|
|
|
|
for (int i = 1; i < 1900; i++) {
|
|
|
|
|
System.out.println("avg==" + i);
|
|
|
|
|
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
|
Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg");
|
|
|
|
|
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
|
|
|
|
|
Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg");
|
|
|
|
|
operation.normalization(a, templeConfig.getConvolutionNerveManager());
|
|
|
|
|
operation.normalization(b, templeConfig.getConvolutionNerveManager());
|
|
|
|
|
operation.normalization(c, templeConfig.getConvolutionNerveManager());
|
|
|
|
|
operation.normalization(d, templeConfig.getConvolutionNerveManager());
|
|
|
|
|
}
|
|
|
|
|
templeConfig.getNormalization().avg();
|
|
|
|
|
// for (int i = 1; i < 1900; i++) {
|
|
|
|
|
// System.out.println("avg==" + i);
|
|
|
|
|
// Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
|
// Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg");
|
|
|
|
|
// Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
|
|
|
|
|
// Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg");
|
|
|
|
|
// operation.normalization(a, templeConfig.getConvolutionNerveManager());
|
|
|
|
|
// operation.normalization(b, templeConfig.getConvolutionNerveManager());
|
|
|
|
|
// operation.normalization(c, templeConfig.getConvolutionNerveManager());
|
|
|
|
|
// operation.normalization(d, templeConfig.getConvolutionNerveManager());
|
|
|
|
|
// }
|
|
|
|
|
// templeConfig.getNormalization().avg();
|
|
|
|
|
for (int j = 0; j < 1; j++) {
|
|
|
|
|
for (int i = 1; i < 1900; i++) {
|
|
|
|
|
System.out.println("study2==================" + i);
|
|
|
|
|
System.out.println("j==" + j + ",study2==================" + i);
|
|
|
|
|
//读取本地URL地址图片,并转化成矩阵
|
|
|
|
|
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
|
Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg");
|
|
|
|
|