测试图片准确率

pull/2/head
Administrator 5 years ago
parent e3db892262
commit face2921dd

@ -31,7 +31,7 @@ public class TempleConfig {
private NerveManager convolutionNerveManagerB;//卷积神经网络管理器
private int row = 5;//行的最小比例
private int column = 3;//列的最小比例
private int deep = 3;//默认深度
private int deep = 2;//默认深度
private int classificationNub = 2;//分类的数量
private int studyPattern;//学习模式
private boolean isHavePosition = false;//是否需要锁定物体位置
@ -242,7 +242,7 @@ public class TempleConfig {
}
//加载各识别分类的期望矩阵
matrixMap.put(0, new Matrix(height, width));
double nub = 1;//每个分类期望参数的跨度
double nub = 5;//每个分类期望参数的跨度
for (int k = 1; k <= classificationNub; k++) {
Matrix matrix = new Matrix(height, width);//初始化期望矩阵
double t = k * nub;//期望矩阵的分类参数数值

@ -136,9 +136,9 @@ public class HelloWorld {
for (int i = 1; i < 1500; i++) {//一阶段
System.out.println("study1===================" + i);
//读取本地URL地址图片,并转化成矩阵
Matrix a = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/a" + i + ".jpg");
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
//Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg");
Matrix c = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/c" + i + ".jpg");
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
//Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg");
//Matrix f = picture.getImageMatrixByLocal("D:\\share\\picture/f" + i + ".png");
//将图像矩阵和标注加入进行学习Accuracy_Pattern 模式 进行第二次学习
@ -154,9 +154,9 @@ public class HelloWorld {
// templeConfig.insertModel(modelParameter);
//二阶段
for (int i = 1; i < 1500; i++) {
Matrix a = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/a" + i + ".jpg");
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
//Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg");
Matrix c = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/c" + i + ".jpg");
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
//Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg");
operation.normalization(a, templeConfig.getConvolutionNerveManager());
@ -169,9 +169,9 @@ public class HelloWorld {
for (int i = 1; i < 1500; i++) {
System.out.println("study2==================" + i);
//读取本地URL地址图片,并转化成矩阵
Matrix a = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/a" + i + ".jpg");
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
//Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg");
Matrix c = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/c" + i + ".jpg");
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
//Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg");
//Matrix f = picture.getImageMatrixByLocal("D:\\share\\picture/f" + i + ".png");
//将图像矩阵和标注加入进行学习Accuracy_Pattern 模式 进行第二次学习
@ -200,9 +200,9 @@ public class HelloWorld {
int allNub = 0;
for (int i = 1500; i <= 1572; i++) {
//读取本地URL地址图片,并转化成矩阵
Matrix a = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/a" + i + ".jpg");
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
//Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg");
Matrix c = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/c" + i + ".jpg");
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
//Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg");
//将图像矩阵和标注加入进行学习Accuracy_Pattern 模式 进行第二次学习
//第二次学习的时候,第三个参数必须是 true

File diff suppressed because one or more lines are too long
Loading…
Cancel
Save