You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/single_op/task/op_task.cc

851 lines
33 KiB

5 years ago
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "single_op/task/op_task.h"
#include <google/protobuf/extension_set.h>
#include <chrono>
#include <thread>
#include "aicpu/common/aicpu_task_struct.h"
#include "common/dump/dump_manager.h"
#include "common/dump/dump_op.h"
#include "common/formats/formats.h"
#include "common/math/math_util.h"
#include "framework/common/debug/log.h"
#include "register/op_tiling.h"
#include "runtime/rt.h"
#include "build_task_utils.h"
5 years ago
namespace ge {
namespace {
constexpr int kLaunchRetryTimes = 1000;
constexpr int kSleepTime = 10;
constexpr uint64_t kReleaseFlag = 1;
constexpr int kCopyNum = 2;
void FreeHbm(void *var) {
if (var) {
(void)rtFree(var);
}
}
} // namespace
Status OpTask::OpenDump(rtStream_t stream) {
if (DumpManager::GetInstance().GetDumpProperties().IsSingleOpNeedDump()) {
GELOGI("Dump is open in single op,start to set dump info");
std::vector<uint64_t> input_addrs;
std::vector<uint64_t> output_adds;
auto input_size = op_desc_->GetInputsSize();
auto output_size = op_desc_->GetOutputsSize();
uintptr_t *arg_base = nullptr;
size_t arg_num = 0;
GetIoAddr(arg_base, arg_num);
if (arg_num < input_size + output_size) {
GELOGE(FAILED, "io_addrs_for_dump_ size %zu is not equal input and output size %zu",
arg_num,
input_size + output_size);
return FAILED;
}
for (size_t i = 0; i < input_size; i++) {
uint64_t input_addr = arg_base[i];
input_addrs.emplace_back(input_addr);
}
for (size_t j = 0; j < output_size; j++) {
uint64_t output_addr = arg_base[input_size + j];
output_adds.emplace_back(output_addr);
}
dump_op_.SetDumpInfo(DumpManager::GetInstance().GetDumpProperties(), op_desc_, input_addrs, output_adds, stream);
auto status = dump_op_.LaunchDumpOp();
if (status != SUCCESS) {
GELOGE(status, "Launch dump op failed in single op");
return status;
}
return SUCCESS;
}
GELOGI("Dump is not open in single op");
return SUCCESS;
}
5 years ago
void TbeOpTask::SetStubFunc(const std::string &name, const void *stub_func) {
this->stub_name_ = name;
this->stub_func_ = stub_func;
}
void TbeOpTask::SetKernelArgs(std::unique_ptr<uint8_t[]> &&args, size_t arg_size, uint32_t block_dim,
const OpDescPtr &op_desc) {
args_ = std::move(args);
5 years ago
arg_size_ = arg_size;
block_dim_ = block_dim;
op_desc_ = op_desc;
5 years ago
}
void TbeOpTask::SetSmDesc(void *sm_desc) { sm_desc_ = sm_desc; }
5 years ago
void OpTask::SetModelArgs(std::string model_name, uint32_t model_id) {
model_name_ = model_name;
model_id_ = model_id;
}
Status OpTask::GetProfilingArgs(std::string &model_name, std::string &op_name, uint32_t &model_id,
uint32_t &block_dim) {
model_name = model_name_;
model_id = model_id_;
block_dim = block_dim_;
GE_CHECK_NOTNULL(op_desc_);
op_name = op_desc_->GetName();
return SUCCESS;
}
Status OpTask::UpdateRunInfo(const vector<GeTensorDesc> &input_desc, const vector<GeTensorDesc> &output_desc) {
return UNSUPPORTED;
}
Status OpTask::UpdateArgTable(const SingleOpModelParam &param) {
auto addresses = BuildTaskUtils::GetAddresses(op_desc_, param);
auto all_addresses = BuildTaskUtils::JoinAddresses(addresses);
uintptr_t *arg_base = nullptr;
size_t arg_num = 0;
GetIoAddr(arg_base, arg_num);
if (arg_num != all_addresses.size()) {
GELOGE(INTERNAL_ERROR, "[%s] arg number mismatches, expect = %zu, but got = %zu",
op_desc_->GetName().c_str(),
arg_num,
all_addresses.size());
return INTERNAL_ERROR;
}
for (void *addr : all_addresses) {
*arg_base++ = reinterpret_cast<uintptr_t >(addr);
}
return SUCCESS;
}
Status OpTask::LaunchKernel(const vector<GeTensorDesc> &input_desc,
const vector<DataBuffer> &input_buffers,
vector<GeTensorDesc> &output_desc,
vector<DataBuffer> &output_buffers,
rtStream_t stream) {
return UNSUPPORTED;
}
TbeOpTask::~TbeOpTask() {
5 years ago
if (sm_desc_ != nullptr) {
(void)rtMemFreeManaged(sm_desc_);
}
if (tiling_buffer_ != nullptr) {
(void)rtFree(tiling_buffer_);
}
5 years ago
}
const void *TbeOpTask::GetArgs() const { return args_.get(); }
5 years ago
size_t TbeOpTask::GetArgSize() const { return arg_size_; }
5 years ago
const std::string &TbeOpTask::GetStubName() const { return stub_name_; }
5 years ago
Status TbeOpTask::LaunchKernel(rtStream_t stream) {
GELOGD("To invoke rtKernelLaunch. task = %s, block_dim = %u", this->stub_name_.c_str(), block_dim_);
5 years ago
auto *sm_desc = reinterpret_cast<rtSmDesc_t *>(sm_desc_);
auto ret = rtKernelLaunch(stub_func_, block_dim_, args_.get(), static_cast<uint32_t>(arg_size_), sm_desc, stream);
int retry_times = 0;
while (ret != RT_ERROR_NONE && retry_times < kLaunchRetryTimes) {
retry_times++;
GELOGW("Retry after %d ms, retry_times: %d", kSleepTime, retry_times);
std::this_thread::sleep_for(std::chrono::milliseconds(kSleepTime));
ret = rtKernelLaunch(stub_func_, block_dim_, args_.get(), arg_size_, sm_desc, stream);
}
5 years ago
if (ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Invoke rtKernelLaunch failed. ret = %d, task = %s", ret, this->stub_name_.c_str());
return RT_FAILED;
}
GELOGI("[TASK_INFO] %s", this->stub_name_.c_str());
auto status = OpenDump(stream);
if (status != SUCCESS) {
GELOGE(status, "Open dump failed in the tbe single op %s", this->stub_name_.c_str());
return status;
}
return SUCCESS;
}
Status TbeOpTask::UpdateRunInfo(const vector<GeTensorDesc> &input_desc, const vector<GeTensorDesc> &output_desc) {
GE_CHK_STATUS_RET_NOLOG(UpdateNodeByShape(input_desc, output_desc));
// invoke OpParaCalculate
GELOGD("Start to invoke OpParaCalculate.");
optiling::OpRunInfo run_info;
run_info.block_dim = 0;
auto ret = optiling::OpParaCalculate(*node_, run_info);
if (ret != GRAPH_SUCCESS) {
GELOGE(FAILED, "Failed to invoke OpParaCalculate. ret = %u", ret);
return FAILED;
}
block_dim_ = run_info.block_dim;
tiling_data_ = run_info.tiling_data.str();
GELOGD("Done invoking OpParaCalculate successfully. block_dim = %u, tiling size = %zu", block_dim_,
tiling_data_.size());
GE_CHK_STATUS_RET(AllocateWorkspaces(run_info.workspaces), "Failed to allocate workspaces");
return SUCCESS;
}
Status TbeOpTask::UpdateTensorDesc(const GeTensorDesc &src_tensor, GeTensorDesc &dst_tensor) {
int64_t storage_format_val = static_cast<Format>(FORMAT_RESERVED);
(void)AttrUtils::GetInt(src_tensor, ge::ATTR_NAME_STORAGE_FORMAT, storage_format_val);
auto storage_format = static_cast<Format>(storage_format_val);
if (storage_format == FORMAT_RESERVED) {
GELOGD("Storage format not set. update shape to [%s], and original shape to [%s]",
src_tensor.GetShape().ToString().c_str(), src_tensor.GetOriginShape().ToString().c_str());
dst_tensor.SetShape(src_tensor.GetShape());
dst_tensor.SetOriginShape(src_tensor.GetOriginShape());
} else {
std::vector<int64_t> storage_shape;
if (!AttrUtils::GetListInt(src_tensor, ge::ATTR_NAME_STORAGE_SHAPE, storage_shape)) {
GELOGE(PARAM_INVALID, "Failed to get storage_shape while storage_format was set");
return PARAM_INVALID;
}
GELOGD("Storage format set. update shape to [%s], and original shape to [%s]",
GeShape(storage_shape).ToString().c_str(), src_tensor.GetShape().ToString().c_str());
dst_tensor.SetShape(GeShape(std::move(storage_shape)));
dst_tensor.SetOriginShape(src_tensor.GetShape());
}
return SUCCESS;
}
Status TbeOpTask::UpdateNodeByShape(const vector<GeTensorDesc> &input_desc, const vector<GeTensorDesc> &output_desc) {
auto op_desc = node_->GetOpDesc();
GE_CHECK_NOTNULL(op_desc);
// Set runtime shape to node
for (size_t i = 0; i < input_desc.size(); ++i) {
auto tensor_desc = op_desc->MutableInputDesc(i);
auto &runtime_tensor_desc = input_desc[i];
GE_CHECK_NOTNULL(tensor_desc);
GE_CHK_STATUS_RET(UpdateTensorDesc(runtime_tensor_desc, *tensor_desc));
}
for (size_t i = 0; i < output_desc.size(); ++i) {
auto tensor_desc = op_desc->MutableOutputDesc(i);
auto &runtime_tensor_desc = output_desc[i];
GE_CHECK_NOTNULL(tensor_desc);
GE_CHK_STATUS_RET(UpdateTensorDesc(runtime_tensor_desc, *tensor_desc));
}
return SUCCESS;
}
void TbeOpTask::EnableDynamicSupport(const NodePtr &node, void *tiling_buffer, size_t max_tiling_size) {
node_ = node;
tiling_buffer_ = tiling_buffer;
max_tiling_size_ = max_tiling_size;
}
Status TbeOpTask::AllocateWorkspaces(const vector<int64_t> &workspace_sizes) {
static const std::string kPurpose("malloc workspace memory for dynamic op.");
if (workspace_sizes.empty()) {
GELOGD("No need to allocate workspace.");
return SUCCESS;
}
int64_t total_size = 0;
std::vector<int64_t> ws_offsets;
for (auto ws_size : workspace_sizes) {
// alignment and padding should be done in OpParaCalculate
GE_CHK_STATUS_RET_NOLOG(CheckInt64AddOverflow(total_size, ws_size));
ws_offsets.emplace_back(total_size);
total_size += ws_size;
}
GELOGD("Total workspace size is %ld", total_size);
GE_CHECK_NOTNULL(stream_resource_);
auto ws_base = stream_resource_->MallocMemory(kPurpose, static_cast<size_t>(total_size));
if (ws_base == nullptr) {
GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "Failed to allocate memory of size: %ld", total_size);
return ACL_ERROR_GE_MEMORY_ALLOCATION;
}
GELOGD("Done allocating workspace memory successfully.");
for (auto ws_offset : ws_offsets) {
workspaces_.emplace_back(ws_base + ws_offset);
}
return SUCCESS;
}
Status TbeOpTask::LaunchKernel(const vector<GeTensorDesc> &input_desc,
const vector<DataBuffer> &input_buffers,
vector<GeTensorDesc> &output_desc,
vector<DataBuffer> &output_buffers,
rtStream_t stream) {
GE_CHK_STATUS_RET_NOLOG(UpdateRunInfo(input_desc, output_desc));
GELOGD("[%s] Start to launch kernel", node_->GetName().c_str());
std::vector<void *> args;
for (auto &buffer : input_buffers) {
args.emplace_back(buffer.data);
}
for (auto &buffer : output_buffers) {
args.emplace_back(buffer.data);
}
for (auto &buffer : workspaces_) {
args.emplace_back(buffer);
}
if (tiling_buffer_ != nullptr) {
GELOGD("[%s] Start to copy tiling info. size = %zu", node_->GetName().c_str(), tiling_data_.size());
GE_CHK_RT_RET(rtMemcpyAsync(tiling_buffer_, max_tiling_size_, tiling_data_.data(), tiling_data_.size(),
RT_MEMCPY_HOST_TO_DEVICE_EX, stream));
args.emplace_back(tiling_buffer_);
}
if (memcpy_s(args_.get(), arg_size_, args.data(), args.size() * sizeof(void *)) != EOK) {
GELOGE(INTERNAL_ERROR, "[%s] Failed to update kernel args.", node_->GetName().c_str());
return INTERNAL_ERROR;
}
GELOGD("[%s] Start to invoke rtKernelLaunch", node_->GetName().c_str());
GE_CHK_RT_RET(rtKernelLaunch(stub_func_, block_dim_, args_.get(), arg_size_, nullptr, stream));
GELOGD("[%s] Done invoking rtKernelLaunch successfully", node_->GetName().c_str());
5 years ago
return SUCCESS;
}
void TbeOpTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {
arg_base = reinterpret_cast<uintptr_t *>(args_.get());
arg_count = arg_size_ / sizeof(void *);
if (tiling_buffer_ != nullptr) {
--arg_count;
}
}
AiCpuBaseTask::~AiCpuBaseTask() {
if (ext_info_addr_dev_ != nullptr) {
(void)rtFree(ext_info_addr_dev_);
}
}
Status AiCpuBaseTask::SetExtInfoAndType(const std::string &kernel_ext_info, uint64_t kernel_id) {
if (kernel_ext_info.empty()) {
GELOGI("Kernel_ext_info is empty, no need copy to device.");
return SUCCESS;
}
int32_t unknown_shape_type_val = 0;
4 years ago
(void) AttrUtils::GetInt(op_desc_, ::ge::ATTR_NAME_UNKNOWN_SHAPE_TYPE, unknown_shape_type_val);
GELOGD("Get unknown_type is %d.", unknown_shape_type_val);
unknown_type_ = static_cast<UnknowShapeOpType>(unknown_shape_type_val);
4 years ago
aicpu_ext_handle_.reset(new(std::nothrow) ::ge::hybrid::AicpuExtInfoHandler(op_desc_->GetName(),
num_inputs_,
num_outputs_,
unknown_type_));
GE_CHK_BOOL_RET_STATUS(aicpu_ext_handle_ != nullptr, FAILED, "Malloc aicpu_ext_handle mem failed!");
Status ret = aicpu_ext_handle_->Parse(kernel_ext_info);
if (ret != SUCCESS) {
GELOGE(ret, "Parse kernel ext info failed, kernel_ext_info_size=%zu.", kernel_ext_info.size());
return ret;
}
GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateSessionInfo(ULLONG_MAX, kernel_id, false),
"UpdateSessionInfo failed.");
GE_CHK_RT_RET(rtMalloc(&ext_info_addr_dev_, aicpu_ext_handle_->GetExtInfoLen(), RT_MEMORY_HBM));
GE_CHK_RT_RET(rtMemcpy(ext_info_addr_dev_, aicpu_ext_handle_->GetExtInfoLen(),
aicpu_ext_handle_->GetExtInfo(), aicpu_ext_handle_->GetExtInfoLen(),
RT_MEMCPY_HOST_TO_DEVICE));
return SUCCESS;
}
4 years ago
Status AiCpuBaseTask::UpdateExtInfo(const std::vector<GeTensorDesc> &input_desc,
std::vector<GeTensorDesc> &output_desc,
rtStream_t stream) {
GELOGI("Update ext info begin, unknown_type=%d.", unknown_type_);
if (num_inputs_ == 0 && num_outputs_ == 0) {
GELOGI("No input and output, no need update ext info.");
return SUCCESS;
}
GE_CHECK_NOTNULL(aicpu_ext_handle_);
for (size_t i = 0; i < num_inputs_; ++i) {
GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateInputShapeAndType(i, input_desc[i]),
"Input[%zu] update input shape failed.", i);
}
if (unknown_type_ != DEPEND_COMPUTE) {
for (size_t j = 0; j < num_outputs_; ++j) {
GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateOutputShapeAndType(j, output_desc[j]),
"Output[%zu] UpdateOutputShapeAndType failed.", j);
}
}
GE_CHK_RT_RET(rtMemcpyAsync(ext_info_addr_dev_,
aicpu_ext_handle_->GetExtInfoLen(), // check size
aicpu_ext_handle_->GetExtInfo(),
aicpu_ext_handle_->GetExtInfoLen(),
RT_MEMCPY_HOST_TO_DEVICE_EX,
stream));
GELOGI("Update ext info end.");
return SUCCESS;
}
Status AiCpuBaseTask::UpdateOutputShape(vector<GeTensorDesc> &output_desc) {
if (num_outputs_ == 0) {
GELOGD("AiCpuBaseTask output_num is 0, no need update output shape.");
return SUCCESS;
}
GELOGD("Start to update DEPEND_SHAPE_RANGE AiCpuBaseTask outputshape.");
4 years ago
GE_CHK_RT_RET(rtMemcpy(aicpu_ext_handle_->GetExtInfo(),
aicpu_ext_handle_->GetExtInfoLen(),
ext_info_addr_dev_,
aicpu_ext_handle_->GetExtInfoLen(),
RT_MEMCPY_DEVICE_TO_HOST));
for (size_t i = 0; i < num_outputs_; ++i) {
GeShape shape;
DataType data_type;
aicpu_ext_handle_->GetOutputShapeAndType(i, shape, data_type);
4 years ago
GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(shape, output_desc[i]),
"AiCpuCCTask Update [%zu]th output shape failed.", i);
}
GELOGD("Update DEPEND_SHAPE_RANGE AiCpuBaseTask outputshape finished.");
return SUCCESS;
}
Status AiCpuBaseTask::UpdateShapeToOutputDesc(const GeShape &shape_new, GeTensorDesc &output_desc) {
auto shape_old = output_desc.GetShape();
output_desc.SetShape(shape_new);
GELOGD("Update AiCpuBaseTask shape from %s to %s", shape_old.ToString().c_str(), shape_new.ToString().c_str());
auto origin_shape_old = output_desc.GetOriginShape();
auto origin_format = output_desc.GetOriginFormat();
auto format = output_desc.GetFormat();
if (origin_format == format) {
output_desc.SetOriginShape(shape_new);
return SUCCESS;
}
std::vector<int64_t> origin_dims_new;
4 years ago
auto trans_ret = formats::TransShape(format, shape_new.GetDims(),
output_desc.GetDataType(), origin_format, origin_dims_new);
GE_CHK_STATUS_RET(trans_ret,
"AiCpuTask originFormat[%d] is not same as format[%d], but TransShape failed, shape=%s.",
origin_format, format, shape_new.ToString().c_str());
auto origin_shape_new = GeShape(origin_dims_new);
output_desc.SetOriginShape(origin_shape_new);
4 years ago
GELOGD("AiCpuTask originFormat[%d] is not same as format[%d], need update from %s ro %s.",
origin_format, format, origin_shape_old.ToString().c_str(), origin_shape_new.ToString().c_str());
return SUCCESS;
}
AiCpuTask::~AiCpuTask() {
FreeHbm(args_);
FreeHbm(io_addr_);
if (dynamic_flag_) {
FreeHbm(workspace_addr_);
}
FreeHbm(copy_workspace_buf_);
FreeHbm(copy_ioaddr_dev_);
FreeHbm(copy_input_release_flag_dev_);
FreeHbm(copy_input_data_size_dev_);
FreeHbm(copy_input_src_dev_);
FreeHbm(copy_input_dst_dev_);
FreeHbm(copy_task_args_buf_);
for (auto summary : output_summary_) {
FreeHbm(summary);
}
for (auto out_shape : out_shape_hbm_) {
FreeHbm(out_shape);
}
}
Status AiCpuTask::LaunchKernel(rtStream_t stream) {
GELOGD("Start to launch kernel. task = %s", this->op_type_.c_str());
auto ret = rtMemcpyAsync(io_addr_,
io_addr_size_,
io_addr_host_.data(),
io_addr_host_.size() * sizeof(void *),
RT_MEMCPY_HOST_TO_DEVICE_EX,
stream);
if (ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "rtMemcpyAsync workspace data failed. ret = %d, task = %s", ret, this->op_type_.c_str());
return RT_FAILED;
}
GELOGI("To invoke rtKernelLaunchEx. task = %s", this->op_type_.c_str());
ret = rtKernelLaunchEx(args_, arg_size_, 0, stream);
if (ret != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Invoke rtKernelLaunch failed. ret = %d, task = %s", ret, this->op_type_.c_str());
return RT_FAILED;
}
GELOGI("[TASK_INFO] %s/%s", std::to_string(kernel_id_).c_str(), op_type_.c_str());
auto status = OpenDump(stream);
if (status != SUCCESS) {
GELOGE(status, "Open dump failed in aicpu single op %s", this->op_type_.c_str());
return status;
}
GELOGD("Done launch kernel successfully. task = %s", this->op_type_.c_str());
return SUCCESS;
}
Status AiCpuTask::PrepareCopyInputs(vector<DataBuffer> &outputs) {
std::vector<uint64_t> copy_input_release_flag;
std::vector<uint64_t> copy_input_data_size;
std::vector<uint64_t> copy_input_src;
std::vector<uint64_t> copy_input_dst;
for (size_t i = 0; i < num_outputs_; ++i) {
const auto &summary = output_summary_host_[i];
4 years ago
GELOGI("Node out[%zu] summary, shape data=0x%lx, shape data size=%lu, raw data=0x%lx, raw data size=%lu.",
i, summary.shape_data_ptr, summary.shape_data_size,
summary.raw_data_ptr, summary.raw_data_size);
auto output = outputs[i];
copy_input_release_flag.emplace_back(kReleaseFlag);
if (summary.raw_data_size > 0) {
copy_input_data_size.emplace_back(output.length);
} else {
copy_input_data_size.emplace_back(summary.raw_data_size);
}
copy_input_src.emplace_back(summary.raw_data_ptr);
copy_input_dst.emplace_back(reinterpret_cast<uintptr_t>(output.data));
const auto &shape_buffer = out_shape_hbm_[i];
copy_input_release_flag.emplace_back(kReleaseFlag);
copy_input_data_size.emplace_back(summary.shape_data_size);
copy_input_src.emplace_back(summary.shape_data_ptr);
copy_input_dst.emplace_back(reinterpret_cast<uintptr_t>(shape_buffer));
}
const size_t copy_input_buf_len = num_outputs_ * kCopyNum * sizeof(uint64_t);
4 years ago
GE_CHK_RT_RET(rtMemcpy(copy_input_release_flag_dev_, copy_input_buf_len,
copy_input_release_flag.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
GE_CHK_RT_RET(rtMemcpy(copy_input_data_size_dev_, copy_input_buf_len,
copy_input_data_size.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
GE_CHK_RT_RET(rtMemcpy(copy_input_src_dev_, copy_input_buf_len,
copy_input_src.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
GE_CHK_RT_RET(rtMemcpy(copy_input_dst_dev_, copy_input_buf_len,
copy_input_dst.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
return SUCCESS;
}
Status AiCpuTask::ReadResultSummaryAndPrepareMemory() {
for (size_t i = 0; i < num_outputs_; ++i) {
auto &result_summary = output_summary_host_[i];
4 years ago
GE_CHK_RT_RET(rtMemcpy(&result_summary, sizeof(aicpu::FWKAdapter::ResultSummary),
output_summary_[i], sizeof(aicpu::FWKAdapter::ResultSummary),
RT_MEMCPY_DEVICE_TO_HOST));
auto shape_data_size = result_summary.shape_data_size;
void *shape_buffer = nullptr;
if (shape_data_size > 0) {
GE_CHK_RT_RET(rtMalloc(&shape_buffer, shape_data_size, RT_MEMORY_HBM));
}
out_shape_hbm_.emplace_back(shape_buffer);
}
return SUCCESS;
}
Status AiCpuTask::CopyDataToHbm(vector<DataBuffer> &outputs,
4 years ago
rtStream_t stream) {
GE_CHK_STATUS_RET_NOLOG(PrepareCopyInputs(outputs));
4 years ago
GE_CHK_RT_RET(rtKernelLaunchEx(copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL),
RT_KERNEL_DEFAULT, stream));
GE_CHK_RT_RET(rtStreamSynchronize(stream));
return SUCCESS;
}
Status AiCpuTask::UpdateShapeByHbmBuffer(vector<GeTensorDesc> &output_desc) {
for (size_t i = 0; i < num_outputs_; ++i) {
const auto &result_summary = output_summary_host_[i];
std::vector<int64_t> shape_dims;
if (result_summary.shape_data_size > 0) {
const auto &shape_hbm = out_shape_hbm_[i];
uint32_t dim_num = result_summary.shape_data_size / sizeof(int64_t);
std::unique_ptr<int64_t[]> shape_addr(new(std::nothrow) int64_t[dim_num]());
GE_CHECK_NOTNULL(shape_addr);
GE_CHK_RT_RET(rtMemcpy(shape_addr.get(), result_summary.shape_data_size,
shape_hbm, result_summary.shape_data_size, RT_MEMCPY_DEVICE_TO_HOST));
for (uint32_t dim_idx = 0; dim_idx < dim_num; ++dim_idx) {
shape_dims.emplace_back(shape_addr[dim_idx]);
GELOGD("Node [%zu]th output dim[%u]=%ld.", i, dim_idx, shape_addr[dim_idx]);
}
}
GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(GeShape(shape_dims), output_desc[i]),
"AiCpuTask update [%zu]th output shape failed.", i);
}
return SUCCESS;
}
4 years ago
Status AiCpuTask::UpdateShapeAndDataByResultSummary(vector<GeTensorDesc> &output_desc,
vector<DataBuffer> &outputs,
rtStream_t stream) {
if (num_outputs_ == 0) {
GELOGI("Output num is 0, there is no need to update the output and size.");
return SUCCESS;
}
GELOGI("Update shape and data by result summary begin.");
for (auto out_shape : out_shape_hbm_) {
FreeHbm(out_shape);
}
out_shape_hbm_.clear();
GE_CHK_STATUS_RET(ReadResultSummaryAndPrepareMemory(),
"Read ResultSummary and update output shape failed.");
GE_CHK_STATUS_RET(CopyDataToHbm(outputs, stream),
4 years ago
"Copy data to output failed.");
GE_CHK_STATUS_RET(UpdateShapeByHbmBuffer(output_desc),
4 years ago
"Update shape by hbm buffer failed.");
for (auto out_shape : out_shape_hbm_) {
FreeHbm(out_shape);
}
out_shape_hbm_.clear();
GELOGI("Update shape and data by result summary end.");
return SUCCESS;
}
Status AiCpuTask::SetIO(const vector<void *> &inputs, vector<void *> &outputs) {
vector<uint64_t> io_addrs;
io_addrs.reserve(num_inputs_ + num_outputs_);
for (size_t i = 0; i < num_inputs_; ++i) {
GE_CHECK_NOTNULL(inputs[i]);
GELOGD("AiCpuTask input[%zu] addr = %p", i, inputs[i]);
io_addrs.emplace_back(reinterpret_cast<uintptr_t>(inputs[i]));
}
if (unknown_type_ != DEPEND_COMPUTE) {
for (size_t i = 0; i < num_outputs_; ++i) {
GE_CHECK_NOTNULL(outputs[i]);
GELOGD("AiCpuTask output[%zu] addr = %p", i, outputs[i]);
io_addrs.emplace_back(reinterpret_cast<uintptr_t>(outputs[i]));
}
} else {
for (size_t i = 0; i < num_outputs_; ++i) {
void *summary_addr = output_summary_[i];
io_addrs.emplace_back(reinterpret_cast<uintptr_t>(summary_addr));
}
}
if (!io_addrs.empty()) {
auto *dst_io_addr = const_cast<uintptr_t *>(reinterpret_cast<const uintptr_t *>(io_addr_));
4 years ago
GE_CHK_RT_RET(rtMemcpy(dst_io_addr,
sizeof(uint64_t) * io_addrs.size(),
&io_addrs[0],
sizeof(uint64_t) * io_addrs.size(),
RT_MEMCPY_HOST_TO_DEVICE));
GE_CHECK_NOTNULL(dst_io_addr);
};
return SUCCESS;
}
Status AiCpuTask::InitForSummaryAndCopy() {
if (unknown_type_ != DEPEND_COMPUTE || num_outputs_ == 0) {
GELOGI("Unknown_type is %d, output num is %d.", unknown_type_, num_outputs_);
return SUCCESS;
}
output_summary_.resize(num_outputs_);
constexpr auto result_summary_size = sizeof(aicpu::FWKAdapter::ResultSummary);
for (size_t i = 0; i < num_outputs_; ++i) {
GE_CHK_RT_RET(rtMalloc(&output_summary_[i], result_summary_size, RT_MEMORY_HBM));
}
output_summary_host_.resize(num_outputs_);
const size_t copy_input_buf_len = num_outputs_ * kCopyNum * sizeof(uint64_t);
GE_CHK_RT_RET(rtMalloc(&copy_input_release_flag_dev_, copy_input_buf_len, RT_MEMORY_HBM));
GE_CHK_RT_RET(rtMalloc(&copy_input_data_size_dev_, copy_input_buf_len, RT_MEMORY_HBM));
GE_CHK_RT_RET(rtMalloc(&copy_input_src_dev_, copy_input_buf_len, RT_MEMORY_HBM));
GE_CHK_RT_RET(rtMalloc(&copy_input_dst_dev_, copy_input_buf_len, RT_MEMORY_HBM));
GE_CHK_RT_RET(rtMalloc(&copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL), RT_MEMORY_HBM));
std::vector<uint64_t> copy_io_addr;
copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_release_flag_dev_));
copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_data_size_dev_));
copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_src_dev_));
copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_dst_dev_));
const auto copy_io_addr_size = sizeof(uint64_t) * copy_io_addr.size();
GE_CHK_RT_RET(rtMalloc(&copy_ioaddr_dev_, copy_io_addr_size, RT_MEMORY_HBM));
4 years ago
GE_CHK_RT_RET(rtMemcpy(copy_ioaddr_dev_, copy_io_addr_size,
copy_io_addr.data(), copy_io_addr_size, RT_MEMCPY_HOST_TO_DEVICE));
return SUCCESS;
}
Status AiCpuTask::SetMemCopyTask(const domi::KernelExDef &kernel_def) {
if (kernel_def.args_size() > sizeof(STR_FWK_OP_KERNEL)) {
4 years ago
GELOGE(PARAM_INVALID, "sizeof STR_FWK_OP_KERNEL is: %lu, but args_size is: %d",
sizeof(STR_FWK_OP_KERNEL), kernel_def.args_size());
return PARAM_INVALID;
}
GE_CHK_RT_RET(rtMalloc(&copy_workspace_buf_, kernel_def.task_info_size(), RT_MEMORY_HBM));
4 years ago
GE_CHK_RT_RET(rtMemcpy(copy_workspace_buf_, kernel_def.task_info_size(),
kernel_def.task_info().data(), kernel_def.task_info_size(), RT_MEMCPY_HOST_TO_DEVICE));
STR_FWK_OP_KERNEL aicpu_task = {0};
4 years ago
auto sec_ret = memcpy_s(&aicpu_task, sizeof(STR_FWK_OP_KERNEL),
kernel_def.args().data(), kernel_def.args().size());
if (sec_ret != EOK) {
GELOGE(FAILED, "memcpy failed, ret: %d", sec_ret);
return FAILED;
}
aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr = reinterpret_cast<uintptr_t>(copy_ioaddr_dev_);
aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr = reinterpret_cast<uintptr_t>(copy_workspace_buf_);
aicpu_task.fwkKernelBase.fwk_kernel.extInfoAddr = 0;
aicpu_task.fwkKernelBase.fwk_kernel.extInfoLen = 0;
4 years ago
GE_CHK_RT_RET(rtMemcpy(copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL),
&aicpu_task, sizeof(STR_FWK_OP_KERNEL), RT_MEMCPY_HOST_TO_DEVICE));
return SUCCESS;
}
4 years ago
Status AiCpuTask::LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
const std::vector<DataBuffer> &input_buffers,
4 years ago
std::vector<GeTensorDesc> &output_desc,
std::vector<DataBuffer> &output_buffers,
rtStream_t stream) {
GE_CHK_STATUS_RET_NOLOG(UpdateExtInfo(input_desc, output_desc, stream));
std::vector<void *> inputs;
std::vector<void *> outputs;
for (auto &buffer : input_buffers) {
inputs.emplace_back(buffer.data);
}
for (auto &buffer : output_buffers) {
outputs.emplace_back(buffer.data);
}
GE_CHK_STATUS_RET_NOLOG(SetIO(inputs, outputs));
GE_CHK_STATUS_RET_NOLOG(LaunchKernel(stream));
if (unknown_type_ == DEPEND_SHAPE_RANGE) {
GE_CHK_RT_RET(rtStreamSynchronize(stream));
GE_CHK_STATUS_RET_NOLOG(UpdateOutputShape(output_desc));
} else if (unknown_type_ == DEPEND_COMPUTE) {
GE_CHK_RT_RET(rtStreamSynchronize(stream));
GE_CHK_STATUS_RET_NOLOG(UpdateShapeAndDataByResultSummary(output_desc, output_buffers, stream));
}
return SUCCESS;
}
Status AiCpuTask::UpdateArgTable(const SingleOpModelParam &param) {
auto addresses = BuildTaskUtils::GetAddresses(op_desc_, param, false);
io_addr_host_ = BuildTaskUtils::JoinAddresses(addresses);
return SUCCESS;
}
void AiCpuTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {
arg_base = reinterpret_cast<uintptr_t *>(io_addr_host_.data());
arg_count = io_addr_host_.size();
}
void AiCpuCCTask::SetKernelArgs(std::unique_ptr<uint8_t[]> args, size_t arg_size) {
args_ = std::move(args);
arg_size_ = arg_size;
// The blockdim value is defult "1" for rtCpuKernelLaunch
block_dim_ = 1;
}
void AiCpuCCTask::SetSoName(const std::string &so_name) { so_name_ = so_name; }
void AiCpuCCTask::SetkernelName(const std::string &kernel_Name) { kernel_name_ = kernel_Name; }
void AiCpuCCTask::SetIoAddr(uintptr_t *io_addr) { io_addr_ = io_addr; }
const void *AiCpuCCTask::GetArgs() const { return args_.get(); }
size_t AiCpuCCTask::GetArgSize() const { return arg_size_; }
4 years ago
AiCpuCCTask::~AiCpuCCTask() {
}
Status AiCpuCCTask::LaunchKernel(rtStream_t stream) {
GELOGI("To invoke rtCpuKernelLaunch. block_dim = %u, so_name is %s, kernel_name is %s", block_dim_, so_name_.data(),
kernel_name_.data());
// sm_desc is nullptr, because l2 buffer does not support
auto *sm_desc = reinterpret_cast<rtSmDesc_t *>(sm_desc_);
auto ret = rtCpuKernelLaunchWithFlag(static_cast<const void *>(so_name_.data()),
static_cast<const void *>(kernel_name_.data()),
block_dim_, args_.get(), static_cast<uint32_t>(arg_size_),
sm_desc, stream, dump_flag_);
if (ret != RT_ERROR_NONE) {
4 years ago
GELOGE(ret, "Invoke rtCpuKernelLaunch failed. ret = %d", ret);
return ret;
}
GELOGD("Invoke rtCpuKernelLaunch succeeded");
auto status = OpenDump(stream);
if (status != SUCCESS) {
GELOGE(status, "Open dump failed in the aicpucc single op %s", this->kernel_name_.c_str());
return status;
}
return SUCCESS;
}
4 years ago
Status AiCpuCCTask::LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
const std::vector<DataBuffer> &input_buffers,
4 years ago
std::vector<GeTensorDesc> &output_desc,
std::vector<DataBuffer> &output_buffers,
rtStream_t stream) {
GE_CHK_BOOL_RET_STATUS(unknown_type_ != DEPEND_COMPUTE, FAILED,
4 years ago
"AiCpuCCTask unknown type[%d] is depend compute, it's not supported now.",
unknown_type_);
GE_CHK_STATUS_RET_NOLOG(UpdateExtInfo(input_desc, output_desc, stream));
size_t arg_index = 0;
auto *task_io_addr = reinterpret_cast<uintptr_t *>(io_addr_);
GE_CHECK_NOTNULL(task_io_addr);
for (auto &input : input_buffers) {
task_io_addr[arg_index++] = reinterpret_cast<uintptr_t>(input.data);
}
for (auto &output : output_buffers) {
task_io_addr[arg_index++] = reinterpret_cast<uintptr_t>(output.data);
}
GE_CHK_STATUS_RET_NOLOG(LaunchKernel(stream));
if (unknown_type_ == DEPEND_SHAPE_RANGE) {
GE_CHK_RT_RET(rtStreamSynchronize(stream));
GE_CHK_STATUS_RET_NOLOG(UpdateOutputShape(output_desc));
}
return SUCCESS;
}
void AiCpuCCTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {
arg_base = io_addr_;
arg_count = io_addr_num_;
}
5 years ago
} // namespace ge