|
|
|
/**
|
|
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "single_op/single_op.h"
|
|
|
|
|
|
|
|
#include "common/fmk_types.h"
|
|
|
|
#include "common/ge_types.h"
|
|
|
|
#include "common/math/math_util.h"
|
|
|
|
#include "common/profiling/profiling_manager.h"
|
|
|
|
#include "framework/common/debug/ge_log.h"
|
|
|
|
#include "framework/common/util.h"
|
|
|
|
#include "graph/load/model_manager/model_utils.h"
|
|
|
|
#include "runtime/mem.h"
|
|
|
|
#include "single_op/single_op_manager.h"
|
|
|
|
#include "single_op/task/build_task_utils.h"
|
|
|
|
#include "graph/load/model_manager/model_manager.h"
|
|
|
|
|
|
|
|
namespace ge {
|
|
|
|
namespace {
|
|
|
|
const size_t kDataMemAlignSize = 32;
|
|
|
|
const size_t kDataMemAlignUnit = 2;
|
|
|
|
const string kShapeTypeDynamic = "dynamic";
|
|
|
|
const string kShapeTypeStatic = "static";
|
|
|
|
|
|
|
|
size_t GetAlignedSize(size_t size) {
|
|
|
|
size_t aligned_size = (size + kDataMemAlignUnit * kDataMemAlignSize - 1) / kDataMemAlignSize * kDataMemAlignSize;
|
|
|
|
return aligned_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
Status ProfilingTaskInfo(OpTask *op_task, const string &shape_type) {
|
|
|
|
if (!ProfilingManager::Instance().ProfilingModelLoadOn()) {
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
TaskDescInfo tmp_task_desc_info;
|
|
|
|
uint32_t model_id;
|
|
|
|
if (op_task->GetProfilingArgs(tmp_task_desc_info, model_id) != SUCCESS) {
|
|
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Get profiling data of task failed");
|
|
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
|
|
}
|
|
|
|
GELOGD("ProfilingReport of op[%s] model[%s] start.",
|
|
|
|
tmp_task_desc_info.op_name.c_str(), tmp_task_desc_info.model_name.c_str());
|
|
|
|
|
|
|
|
tmp_task_desc_info.shape_type = shape_type;
|
|
|
|
tmp_task_desc_info.cur_iter_num = 0;
|
|
|
|
tmp_task_desc_info.task_type = op_task->GetTaskType();
|
|
|
|
|
|
|
|
std::vector<TaskDescInfo> task_desc_info;
|
|
|
|
task_desc_info.emplace_back(tmp_task_desc_info);
|
|
|
|
|
|
|
|
auto &profiling_manager = ProfilingManager::Instance();
|
|
|
|
profiling_manager.ReportProfilingData(model_id, task_desc_info);
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
SingleOp::SingleOp(StreamResource *stream_resource, std::mutex *stream_mutex, rtStream_t stream)
|
|
|
|
: stream_resource_(stream_resource), stream_mutex_(stream_mutex), stream_(stream) {
|
|
|
|
}
|
|
|
|
|
|
|
|
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY SingleOp::~SingleOp() {
|
|
|
|
for (auto task : tasks_) {
|
|
|
|
delete task;
|
|
|
|
task = nullptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Status SingleOp::ValidateArgs(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs) {
|
|
|
|
auto num_inputs = inputs.size();
|
|
|
|
if (num_inputs != input_sizes_.size()) {
|
|
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Input num mismatch. model expect %zu, but given %zu", input_addr_list_.size(),
|
|
|
|
inputs.size());
|
|
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i < num_inputs; ++i) {
|
|
|
|
// preventing from read out of bound
|
|
|
|
size_t aligned_size = GetAlignedSize(inputs[i].length);
|
|
|
|
GELOGI("Input [%zu], aligned_size:%zu, inputs.length:%lu, input_sizes_:%zu",
|
|
|
|
i, aligned_size, inputs[i].length, input_sizes_[i]);
|
|
|
|
if (aligned_size < input_sizes_[i]) {
|
|
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Input size mismatch. index = %zu, model expect %zu,"
|
|
|
|
" but given %zu(after align)", i, input_sizes_[i], aligned_size);
|
|
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auto num_outputs = outputs.size();
|
|
|
|
if (num_outputs != output_sizes_.size()) {
|
|
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "output num mismatch. model expect %zu, but given %zu",
|
|
|
|
output_sizes_.size(), outputs.size());
|
|
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i < num_outputs; ++i) {
|
|
|
|
// preventing from write out of bound
|
|
|
|
size_t aligned_size = GetAlignedSize(outputs[i].length);
|
|
|
|
GELOGI("Output [%zu], aligned_size:%zu, outputs.length:%lu, output_sizes_:%zu",
|
|
|
|
i, aligned_size, outputs[i].length, output_sizes_[i]);
|
|
|
|
if (aligned_size < output_sizes_[i]) {
|
|
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Output size mismatch. index = %zu, model expect %zu,"
|
|
|
|
"but given %zu(after align)", i, output_sizes_[i], aligned_size);
|
|
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
Status SingleOp::GetArgs(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs) {
|
|
|
|
size_t arg_index = 0;
|
|
|
|
for (auto &input : inputs) {
|
|
|
|
args_[arg_index++] = reinterpret_cast<uintptr_t>(input.data);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto &output : outputs) {
|
|
|
|
args_[arg_index++] = reinterpret_cast<uintptr_t>(output.data);
|
|
|
|
}
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
Status SingleOp::UpdateArgs(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs) {
|
|
|
|
Status ret = GetArgs(inputs, outputs);
|
|
|
|
if (ret != SUCCESS) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
// update tbe task args
|
|
|
|
size_t num_args = arg_table_.size();
|
|
|
|
for (size_t i = 0; i < num_args; ++i) {
|
|
|
|
std::vector<uintptr_t *> &ptr_to_arg_in_tasks = arg_table_[i];
|
|
|
|
if (ptr_to_arg_in_tasks.empty()) {
|
|
|
|
GELOGW("found NO arg address to update for arg[%lu]", i);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uintptr_t *arg_addr : ptr_to_arg_in_tasks) {
|
|
|
|
*arg_addr = args_[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status SingleOp::ExecuteAsync(const std::vector<DataBuffer> &inputs,
|
|
|
|
const std::vector<DataBuffer> &outputs) {
|
|
|
|
Status ret = ValidateArgs(inputs, outputs);
|
|
|
|
if (ret != SUCCESS) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
GE_CHECK_NOTNULL(stream_resource_);
|
|
|
|
std::lock_guard<std::mutex> lk(*stream_mutex_);
|
|
|
|
auto current_mem_base = stream_resource_->GetMemoryBase();
|
|
|
|
if (running_param_->mem_base != current_mem_base) {
|
|
|
|
running_param_->mem_base = const_cast<uint8_t *>(current_mem_base);
|
|
|
|
GELOGD("Memory base changed, new memory base = %p", current_mem_base);
|
|
|
|
for (auto &task : tasks_) {
|
|
|
|
auto new_address = BuildTaskUtils::GetAddresses(task->GetOpdesc(), *running_param_);
|
|
|
|
GE_CHK_STATUS_RET(task->UpdateArgTable(*running_param_),
|
|
|
|
"[%s] Failed to update arg table",
|
|
|
|
task->GetOpdesc()->GetName().c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ret = UpdateArgs(inputs, outputs);
|
|
|
|
if (ret != SUCCESS) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto &task : tasks_) {
|
|
|
|
ret = task->LaunchKernel(stream_);
|
|
|
|
if (ret != SUCCESS) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
GE_CHK_STATUS_RET(task->OpenDump(stream_), "Open single op %s dump filed",task->GetOpdesc()->GetName().c_str());
|
|
|
|
GE_CHK_STATUS_RET_NOLOG(ProfilingTaskInfo(task, kShapeTypeStatic));
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void SingleOp::SetStream(rtStream_t stream) {
|
|
|
|
stream_ = stream;
|
|
|
|
}
|
|
|
|
|
|
|
|
DynamicSingleOp::DynamicSingleOp(uintptr_t resource_id, std::mutex *stream_mutex, rtStream_t stream)
|
|
|
|
: resource_id_(resource_id), stream_mutex_(stream_mutex), stream_(stream) {
|
|
|
|
}
|
|
|
|
|
|
|
|
Status DynamicSingleOp::ValidateParams(const vector<GeTensorDesc> &input_desc,
|
|
|
|
const std::vector<DataBuffer> &inputs,
|
|
|
|
std::vector<GeTensorDesc> &output_desc,
|
|
|
|
std::vector<DataBuffer> &outputs) const {
|
|
|
|
if (inputs.size() != input_desc.size()) {
|
|
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID,
|
|
|
|
"Input number mismatches input desc number. Input num = %zu, input desc num = %zu",
|
|
|
|
inputs.size(),
|
|
|
|
input_desc.size());
|
|
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (outputs.size() != output_desc.size()) {
|
|
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID,
|
|
|
|
"Output number mismatches output desc number. Output num = %zu, output desc num = %zu",
|
|
|
|
outputs.size(),
|
|
|
|
output_desc.size());
|
|
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (input_desc.size() != num_inputs_) {
|
|
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID,
|
|
|
|
"Input number mismatches. expect %zu, but given %zu",
|
|
|
|
num_inputs_,
|
|
|
|
input_desc.size());
|
|
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (output_desc.size() != num_outputs_) {
|
|
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID,
|
|
|
|
"Output number mismatches. expect %zu, but given %zu",
|
|
|
|
num_outputs_,
|
|
|
|
output_desc.size());
|
|
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
|
|
}
|
|
|
|
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
Status DynamicSingleOp::ExecuteAsync(const vector<GeTensorDesc> &input_desc,
|
|
|
|
const vector<DataBuffer> &input_buffers,
|
|
|
|
vector<GeTensorDesc> &output_desc,
|
|
|
|
vector<DataBuffer> &output_buffers) {
|
|
|
|
GE_CHK_STATUS_RET_NOLOG(ValidateParams(input_desc, input_buffers, output_desc, output_buffers));
|
|
|
|
if (hybrid_model_executor_ != nullptr) {
|
|
|
|
GELOGD("Execute multi-task dynamic single op by hybrid model executor");
|
|
|
|
hybrid::HybridModelExecutor::ExecuteArgs args;
|
|
|
|
for (auto &input : input_buffers) {
|
|
|
|
args.inputs.emplace_back(hybrid::TensorValue(input.data, input.length));
|
|
|
|
}
|
|
|
|
for (auto &output : output_buffers) {
|
|
|
|
args.outputs.emplace_back(hybrid::TensorValue(output.data, output.length));
|
|
|
|
}
|
|
|
|
for (auto &tensor_desc : input_desc) {
|
|
|
|
auto desc = MakeShared<GeTensorDesc>(tensor_desc);
|
|
|
|
GE_CHECK_NOTNULL(desc);
|
|
|
|
args.input_desc.emplace_back(desc);
|
|
|
|
}
|
|
|
|
|
|
|
|
return hybrid_model_executor_->Execute(args);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::lock_guard<std::mutex> lk(*stream_mutex_);
|
|
|
|
GE_CHECK_NOTNULL(op_task_);
|
|
|
|
|
|
|
|
GE_CHK_STATUS_RET_NOLOG(op_task_->LaunchKernel(input_desc, input_buffers, output_desc, output_buffers, stream_));
|
|
|
|
GE_CHK_STATUS_RET_NOLOG(op_task_->OpenDump(stream_));
|
|
|
|
GE_CHK_STATUS_RET_NOLOG(ProfilingTaskInfo(op_task_.get(), kShapeTypeDynamic));
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
} // namespace ge
|