|
|
|
/**
|
|
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef GE_OP_TRAINING_OPS_H
|
|
|
|
#define GE_OP_TRAINING_OPS_H
|
|
|
|
|
|
|
|
#include "../graph/operator_reg.h"
|
|
|
|
namespace ge {
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the AdaMax algorithm.\n
|
|
|
|
* t-1 mean previous period.
|
|
|
|
* m_t <- beta1 * m{t-1} + (1 - beta1) * grad\n
|
|
|
|
* v_t <- max(beta2 * v{t-1}, abs(grad))\n
|
|
|
|
* var <- var - lr / (1 - beta1^t) * m_t / (v_t + epsilon)
|
|
|
|
*
|
|
|
|
*@attention Constraints:\n
|
|
|
|
* the input tensors must have the same shape.
|
|
|
|
*
|
|
|
|
*@par Inputs:
|
|
|
|
*@li var: A mutable tensor. Must be one of the following types: TensorType::NumberType().
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li m: A mutable tensor. Has the same type as "var".
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li v: A mutable tensor. Has the same type as "var".
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li beta1_power: A scalar. Has the same type as "var".
|
|
|
|
*@li lr: learning_rate. A scalar. Has the same type as "var".
|
|
|
|
*@li beta1: A scalar. Has the same type as "var".
|
|
|
|
*@li beta2: A scalar. Has the same type as "var".
|
|
|
|
*@li epsilon: A scalar. Has the same type as "var".
|
|
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
|
|
*
|
|
|
|
*@par Attributes:\n
|
|
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
|
|
* contention.
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyAdaMax)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(m, TensorType::NumberType())
|
|
|
|
.INPUT(v, TensorType::NumberType())
|
|
|
|
.INPUT(beta1_power, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(beta1, TensorType::NumberType())
|
|
|
|
.INPUT(beta2, TensorType::NumberType())
|
|
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyAdaMax)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the momentum scheme. Set use_nesterov = True if you
|
|
|
|
* want to use Nesterov momentum.\n
|
|
|
|
* computing process: \n
|
|
|
|
* accum = accum * momentum + grad\n
|
|
|
|
* var -= lr * accum
|
|
|
|
*
|
|
|
|
*@attention Constraints:\n
|
|
|
|
* the input tensors must have the same shape.
|
|
|
|
*
|
|
|
|
*@par Inputs:
|
|
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
|
|
*@li accum: A mutable tensor. Has the same type as "var".
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
|
|
*
|
|
|
|
*@par Attributes:
|
|
|
|
*@li use_nesterov: An optional bool. Defaults to "False".
|
|
|
|
* If "True", the tensor passed to compute grad will be
|
|
|
|
* var - lr * momentum * accum, so in the end, the var you get is actually
|
|
|
|
* var - lr * momentum * accum.
|
|
|
|
*
|
|
|
|
*@li use_locking: An optional bool. Defaults to "False".\n
|
|
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected by a lock;
|
|
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
REG_OP(ApplyMomentum)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(accum, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_nesterov, Bool, false)
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyMomentum)
|
|
|
|
|
|
|
|
REG_OP(ApplyMomentumCCE)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(accum, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_nesterov, Bool, false)
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyMomentumCCE)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the AddSign update.\n
|
|
|
|
* t-1 mean previous period.
|
|
|
|
* m_t <- beta1 * m_{t-1} + (1 - beta1) * grad\n
|
|
|
|
* update <- exp(logbase * sign_decay * sign(grad) * sign(m_t)) * grad\n
|
|
|
|
* var <- var - lr * update
|
|
|
|
*
|
|
|
|
*@attention Constraints:\n
|
|
|
|
* the input tensors must have the same shape.
|
|
|
|
*
|
|
|
|
*@par Inputs:
|
|
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
|
|
*@li m: A mutable tensor. Has the same type as "var".
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
|
|
*@li logbase: A scalar. Has the same type as "var".
|
|
|
|
*@li sign_decay: A scalar. Has the same type as "var".
|
|
|
|
*@li beta: A scalar. Has the same type as "var".
|
|
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
|
|
*
|
|
|
|
*@par Attributes:
|
|
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
|
|
* contention.
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyPowerSign)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(m, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(logbase, TensorType::NumberType())
|
|
|
|
.INPUT(sign_decay, TensorType::NumberType())
|
|
|
|
.INPUT(beta, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyPowerSign)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" as FOBOS algorithm with fixed learning rate.\n
|
|
|
|
* prox_v = var - alpha * delta\n
|
|
|
|
* var = sign(prox_v)/(1+alpha*l2) * max{|prox_v|-alpha*l1,0}
|
|
|
|
*
|
|
|
|
*@attention Constraints:\n
|
|
|
|
* the input tensors must have the same shape.
|
|
|
|
*
|
|
|
|
*@par Inputs:
|
|
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
|
|
*@li alpha: A scalar. Has the same type as "var".
|
|
|
|
*@li l1: A scalar. Has the same type as "var".
|
|
|
|
*@li l2: A scalar. Has the same type as "var".
|
|
|
|
*@li delta: A tensor. Has the same type as "var". The change.
|
|
|
|
*
|
|
|
|
*@par Attributes:
|
|
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
|
|
* contention.
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyProximalGradientDescent)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(alpha, TensorType::NumberType())
|
|
|
|
.INPUT(l1, TensorType::NumberType())
|
|
|
|
.INPUT(l2, TensorType::NumberType())
|
|
|
|
.INPUT(delta, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyProximalGradientDescent)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the AddSign update.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Seven inputs, including:
|
|
|
|
* @li var: A mutable Tensor of type TensorType::NumberType().
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li m: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
* @li alpha: A Tensor of the same type as "var". Must be a scalar.
|
|
|
|
* @li sign_decay: A Tensor of the same type as "var". Must be a scalar.
|
|
|
|
* @li beta: A Tensor of the same type as "var". Must be a scalar.
|
|
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the "var" and "m" tensors will be
|
|
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
|
|
* but may exhibit less contention.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyAddSign)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(m, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(alpha, TensorType::NumberType())
|
|
|
|
.INPUT(sign_decay, TensorType::NumberType())
|
|
|
|
.INPUT(beta, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyAddSign)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the centered RMSProp algorithm.\n
|
|
|
|
* The centered RMSProp algorithm uses an estimate of the centered second moment
|
|
|
|
* (i.e., the variance) for normalization, as opposed to regular RMSProp, which
|
|
|
|
* uses the (uncentered) second moment. This often helps with training, but is
|
|
|
|
* slightly more expensive in terms of computation and memory.
|
|
|
|
*
|
|
|
|
* t-1 mean previous period.
|
|
|
|
* mg <- rho * mg{t-1} + (1-rho) * grad\n
|
|
|
|
* ms <- rho * ms{t-1} + (1-rho) * grad * grad\n
|
|
|
|
* mom <- momentum * mom{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon)\n
|
|
|
|
* var <- var - mom\n
|
|
|
|
*
|
|
|
|
*@attention Constraints:\n
|
|
|
|
*@li in dense implementation of this algorithm, mg, ms, and mom will
|
|
|
|
* update even if the grad is zero, but in this sparse implementation, mg, ms,
|
|
|
|
* and mom will not update in iterations during which the grad is zero.
|
|
|
|
*@li the input tensors must have the same shape.
|
|
|
|
*
|
|
|
|
*@par Inputs:
|
|
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
|
|
*@li mg: A mutable tensor. Has the same type as "var".
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li ms: A mutable tensor. Has the same type as "var".
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li mom: A mutable tensor. Has the same type as "var".
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
|
|
*@li rho: A scalar. Has the same type as "var".
|
|
|
|
*@li momentum: A tensor. Has the same type as "var".
|
|
|
|
*@li epsilon: A scalar. Has the same type as "var".
|
|
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
|
|
*
|
|
|
|
*@par Attributes:
|
|
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
|
|
* contention.
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyCenteredRMSProp)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(mg, TensorType::NumberType())
|
|
|
|
.INPUT(ms, TensorType::NumberType())
|
|
|
|
.INPUT(mom, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(rho, TensorType::NumberType())
|
|
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyCenteredRMSProp)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" by subtracting 'alpha' * 'delta' from it.\n
|
|
|
|
* var -= delta * alpha
|
|
|
|
*
|
|
|
|
*@attention Constraints:\n
|
|
|
|
* the input tensors must have the same shape.
|
|
|
|
*
|
|
|
|
*@par Inputs:
|
|
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
|
|
*@li alpha: A scalar. Has the same type as "var".
|
|
|
|
*@li delta: A tensor for the change. Has the same type as "var".
|
|
|
|
*
|
|
|
|
*@par Attributes:
|
|
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
|
|
* contention.
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyGradientDescent)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(alpha, TensorType::NumberType())
|
|
|
|
.INPUT(delta, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyGradientDescent)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the adagrad scheme.\n
|
|
|
|
* accum += grad * grad\n
|
|
|
|
* var -= lr * grad * (1 / sqrt(accum))
|
|
|
|
*
|
|
|
|
*@attention Constraints:\n
|
|
|
|
* the input tensors must have the same shape.
|
|
|
|
*
|
|
|
|
*@par Inputs:
|
|
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
|
|
*@li accum: A mutable tensor. Has the same type as "var".
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
|
|
*
|
|
|
|
*@par Attributes:
|
|
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
|
|
* contention.
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyAdagrad)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(accum, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(update_slots, Bool, true)
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyAdagrad)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the proximal adagrad scheme.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Eight inputs, including:
|
|
|
|
* @li var: A mutable Tensor. Must be one of the following types:
|
|
|
|
* TensorType::NumberType(). Should be a Variable Tensor.
|
|
|
|
* @li gradient_accumulator: A mutable Tensor. Must have the same
|
|
|
|
* type as "var". Should be a Variable Tensor.
|
|
|
|
* @li gradient_squared_accumulator: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
* @li lr: A Tensor of the same type as "var".
|
|
|
|
* Scaling factor. Must be a scalar.
|
|
|
|
* @li l1: A Tensor of the same type as "var".
|
|
|
|
* L1 regulariation. Must be a scalar.
|
|
|
|
* @li l2: A Tensor of the same type as "var".
|
|
|
|
* L2 regulariation. Must be a scalar.
|
|
|
|
* @li global_step: A Tensor of type int32 or int64.
|
|
|
|
* Training step number. Must be a scalar.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the var and accum tensors will be
|
|
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
|
|
* but may exhibit less contention.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyAdagradDA)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(gradient_accumulator, TensorType::NumberType())
|
|
|
|
.INPUT(gradient_squared_accumulator, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(l1, TensorType::NumberType())
|
|
|
|
.INPUT(l2, TensorType::NumberType())
|
|
|
|
.INPUT(global_step, TensorType({DT_INT32, DT_INT64}))
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyAdagradDA)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Returns the dimension index in the destination data format given the one in
|
|
|
|
* the source data format.
|
|
|
|
*
|
|
|
|
*@par Inputs:
|
|
|
|
* x: A tensor of type int32 or int64.
|
|
|
|
* A Tensor with each element as a dimension index in source data format.
|
|
|
|
* Must be in the range [-4, 4).
|
|
|
|
*
|
|
|
|
*@par Attributes:
|
|
|
|
*@li src_format: An optional string. Defaults to NHWC.
|
|
|
|
* source data format.
|
|
|
|
*@li dst_format: An optional string. Defaults to NCHW.
|
|
|
|
* destination data format.
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
* y: A tensor. Has the same type as "x".
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
REG_OP(DataFormatDimMap)
|
|
|
|
.INPUT(x, TensorType::IndexNumberType())
|
|
|
|
.ATTR(src_format, String, "NHWC")
|
|
|
|
.ATTR(dst_format, String, "NCHW")
|
|
|
|
.OUTPUT(y, TensorType::IndexNumberType())
|
|
|
|
.OP_END_FACTORY_REG(DataFormatDimMap)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Implements stochastic gradient descent (optionally with momentum).\n
|
|
|
|
* Nesterov momentum is based on the formula from
|
|
|
|
* On the importance of initialization and momentum in deep learning.\n
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* @li parameters: A mutable tensor of type float16 or float32.\n
|
|
|
|
* Specifies the iterable of parameters to optimize or dicts defining parameter
|
|
|
|
* groups.
|
|
|
|
* @li gradient: A tensor of type float16 or float32.\n
|
|
|
|
* Specifies the gradient of training step.
|
|
|
|
* @li learning_rate: A tensor of type float16 or float32.\n
|
|
|
|
* Specifies the learing_rate of training step.
|
|
|
|
* @li accum: A tensor of type float16 or float32.
|
|
|
|
* Specifies the velocity of training step.
|
|
|
|
* @li momentum: A tensor of type float16 or float32.
|
|
|
|
* Specifies the momentum factor.
|
|
|
|
* @li stat: A tensor of type float16 or float32.
|
|
|
|
* Specifies the status representing the first step or not.
|
|
|
|
|
|
|
|
* @par Attributes:
|
|
|
|
* @li dampening: An optional float, specifying the dampening for momentum.
|
|
|
|
* Defaults to "0.0".
|
|
|
|
* @li weight_decay: An optional float, specifying the L2 penalty. Defaults to
|
|
|
|
* "0.0".
|
|
|
|
* @li nesterov: An optional bool, specifying whether to enable Nesterov
|
|
|
|
* momentum. Defaults to "False".
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* parameters: A mutable tensor same as input "parameters".
|
|
|
|
|
|
|
|
* @see ApplyMomentum()
|
|
|
|
*/
|
|
|
|
REG_OP(SGD)
|
|
|
|
.INPUT(parameters, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
|
|
.INPUT(gradient, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
|
|
.INPUT(learning_rate, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
|
|
.INPUT(accum, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
|
|
.INPUT(momentum, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
|
|
.INPUT(stat, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
|
|
.OUTPUT(parameters, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
|
|
.ATTR(dampening, Float, 0.0)
|
|
|
|
.ATTR(weight_decay, Float, 0.0)
|
|
|
|
.ATTR(nesterov, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(SGD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Updates "var" according to the RMSProp algorithm.\n
|
|
|
|
* mean_square = decay * mean_square + (1-decay) * gradient ** 2\n
|
|
|
|
* Delta = learning_rate * gradient / sqrt(mean_square + epsilon)\n
|
|
|
|
* ms <- rho * ms_{t-1} + (1-rho) * grad * grad\n
|
|
|
|
* mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)\n
|
|
|
|
* var <- var - mom\n
|
|
|
|
*
|
|
|
|
* @par Inputs:
|
|
|
|
* @li var: A mutable tensor. Must be one of the data types defined in\n
|
|
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
|
|
* @li ms: A mutable tensor. Must have the same type as "var". Should be from a
|
|
|
|
* Variable().
|
|
|
|
* @li mom: A mutable tensor. Must have the same type as "var". Should be from a
|
|
|
|
* Variable().
|
|
|
|
* @li lr: A scalar. Must have the same type as "var".
|
|
|
|
* @li rho: A scalar. Must have the same type as "var".
|
|
|
|
* @li momentum: A scalar. Must have the same type as "var".
|
|
|
|
* @li epsilon: A scalar. Must have the same type as "var".
|
|
|
|
* @li grad: A tensor, specifying the gradient. Must have the same type as "var".
|
|
|
|
*
|
|
|
|
* @par Attributes:
|
|
|
|
* use_locking: An optional "bool". Defaults to "False". If "True", updating of\n
|
|
|
|
* the "var", "ms", and "mom" tensors will be protected by a lock; otherwise the\n
|
|
|
|
* behavior is undefined, but may exhibit less contention.
|
|
|
|
*
|
|
|
|
* @par Outputs:
|
|
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
|
|
*
|
|
|
|
* @attention Constraints:
|
|
|
|
* @li Note that in dense implementation of this algorithm, "ms" and "mom" will\n
|
|
|
|
* update even if "grad" is 0, but in this sparse implementation, "ms" and "mom"\n
|
|
|
|
* will not update in iterations during which "grad" is 0.\n
|
|
|
|
* @li The input tensors "var", "ms", "mom" and "grad" must have the same shape.
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyRMSProp)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(ms, TensorType::NumberType())
|
|
|
|
.INPUT(mom, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(rho, TensorType::NumberType())
|
|
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyRMSProp)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Updates "var" according to the RMSProp algorithm, a const input will be
|
|
|
|
* considered as an attribute.\n
|
|
|
|
* mean_square = decay * mean_square + (1-decay) * gradient ** 2\n
|
|
|
|
* Delta = learning_rate * gradient / sqrt(mean_square + epsilon)\n
|
|
|
|
* ms <- rho * ms_{t-1} + (1-rho) * grad * grad\n
|
|
|
|
* mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)\n
|
|
|
|
* var <- var - mom
|
|
|
|
*
|
|
|
|
* @par Inputs:
|
|
|
|
* @li var: A mutable tensor. Must be one of the data types defined in\n
|
|
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
|
|
* @li ms: A mutable tensor. Must have the same type as "var". Should be from a
|
|
|
|
* Variable().
|
|
|
|
* @li mom: A mutable tensor. Must have the same type as "var". Should be from a
|
|
|
|
* Variable().
|
|
|
|
* @li lr: A scalar. Must have the same type as "var".
|
|
|
|
* @li grad: A tensor, specifying the gradient. Must have the same type as "var".
|
|
|
|
*
|
|
|
|
* @par Attributes:
|
|
|
|
* @li use_locking: An optional "bool". Defaults to "False". If "True", updating\n
|
|
|
|
* of the "var", "ms", and "mom" tensors will be protected by a lock; otherwise
|
|
|
|
* the behavior is undefined, but may exhibit less contention.
|
|
|
|
* @li rho: A required scalar. Must have the same type as "var".
|
|
|
|
* @li momentum: A required scalar. Must have the same type as "var".
|
|
|
|
* @li epsilon: A required scalar. Must have the same type as "var".
|
|
|
|
*
|
|
|
|
* @par Outputs:
|
|
|
|
* var: A mutable tensor. Must have the same type as input "var".
|
|
|
|
* @attention Constraints:
|
|
|
|
* @li Note that in dense implementation of this algorithm, "ms" and "mom" will\n
|
|
|
|
* update even if "grad" is 0, but in this sparse implementation, "ms" and "mom"\n
|
|
|
|
* will not update in iterations during which "grad" is 0.
|
|
|
|
* @li The input tensors "var", "ms", "mom" and "grad" must have the same shape.
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyRMSPropD)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(ms, TensorType::NumberType())
|
|
|
|
.INPUT(mom, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.REQUIRED_ATTR(rho, Float)
|
|
|
|
.REQUIRED_ATTR(momentum, Float)
|
|
|
|
.REQUIRED_ATTR(epsilon, Float)
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyRMSPropD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Update "var" and "accum" according to FOBOS with Adagrad learning rate.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Six inputs, including:
|
|
|
|
* @li var: A mutable Tensor of type TensorType::NumberType().
|
|
|
|
* Should be from a Variable().
|
|
|
|
* @li accum: A mutable Tensor of the same type as "var". Should be from a Variable().
|
|
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*use_locking: An optional bool. Defaults to "False". If "True", updating of the "var" and "accum" *tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less *contention.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyProximalAdagrad)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(accum, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(l1, TensorType::NumberType())
|
|
|
|
.INPUT(l2, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyProximalAdagrad)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates entries in 'var' and 'accum' according to the Proximal Adagrad algorithm.\ n
|
|
|
|
* Compared with op ApplyProximalAdagrad, an additional index tensor is input,
|
|
|
|
* Only the indices into the first dimensions of "var" and "accum" are updated.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
* Seven inputs, including:\n
|
|
|
|
* @li var: A mutable Tensor.\n
|
|
|
|
* TensorType::NumberType(). Should be a Variable Tensor.
|
|
|
|
* @li accum: A mutable Tensor of the same type as "var".\n
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li lr: A Tensor of the same type as "var".\n
|
|
|
|
* Scaling factor. Must be a scalar.
|
|
|
|
* @li l1: A Tensor of the same type as "var".\n
|
|
|
|
* L1 regulariation. Must be a scalar.
|
|
|
|
* @li l2: A Tensor of the same type as "var".\n
|
|
|
|
* L2 regulariation. Must be a scalar.
|
|
|
|
* @li grad: A Tensor. Has the same type as "var". \n
|
|
|
|
* The gradient.
|
|
|
|
* @li indices: A vector of indices into the first dimension of "var" and "accum".\n
|
|
|
|
* TensorType::IndexNumberType().
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*use_locking: An optional bool. Defaults to "False".\n
|
|
|
|
* If "True", updating of the var and accum tensors will be protected by a lock; \n
|
|
|
|
* If "False", the behavior is undefined, but may exhibit less contention.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*/
|
|
|
|
REG_OP(SparseApplyProximalAdagrad)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(accum, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(l1, TensorType::NumberType())
|
|
|
|
.INPUT(l2, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(SparseApplyProximalAdagrad)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the Ftrl-proximal scheme.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Eight inputs, including:
|
|
|
|
* @li var: A mutable Tensor. Must be of type TensorType::NumberType().
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li linear: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
|
|
* @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the "var" and "accum" tensors will be
|
|
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
|
|
* but may exhibit less contention.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyFtrl)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(accum, TensorType::NumberType())
|
|
|
|
.INPUT(linear, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(l1, TensorType::NumberType())
|
|
|
|
.INPUT(l2, TensorType::NumberType())
|
|
|
|
.INPUT(lr_power, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyFtrl)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Update "var" according to the Ftrl-proximal scheme.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Nine inputs, including:
|
|
|
|
* @li var: A mutable Tensor. Must be of type TensorType::NumberType().
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li linear: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
|
|
* @li l2_shrinkage: A Tensor of the same type as "var".
|
|
|
|
* @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the "var" and "accum" tensors will be
|
|
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
|
|
* but may exhibit less contention.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyFtrlV2)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(accum, TensorType::NumberType())
|
|
|
|
.INPUT(linear, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(l1, TensorType::NumberType())
|
|
|
|
.INPUT(l2, TensorType::NumberType())
|
|
|
|
.INPUT(l2_shrinkage, TensorType::NumberType())
|
|
|
|
.INPUT(lr_power, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyFtrlV2)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the Adam algorithm.\n
|
|
|
|
* lr_t <- text{learning\_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)\n
|
|
|
|
* m_t <- beta_1 * m_{t-1} + (1 - beta_1) * g\n
|
|
|
|
* v_t <- max(beta2 * v{t-1}, abs(g))\n
|
|
|
|
* variable <- variable - lr_t * m_t / (sqrt{v_t} + epsilon)
|
|
|
|
*
|
|
|
|
*@attention Constraints:\n
|
|
|
|
* *The input tensors must have the same shape.*
|
|
|
|
*
|
|
|
|
*@par Inputs:
|
|
|
|
*@li var: A mutable Tensor of the type TensorType::NumberType().
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li m: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li v: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be from a Variable().
|
|
|
|
*@li beta1_power: A scalar of the same type as "var".
|
|
|
|
*@li beta2_power: A scalar of the same type as "var".
|
|
|
|
*@li lr: learning_rate. A scalar of the same type as "var".
|
|
|
|
*@li beta1: A scalar of the same type as "var".
|
|
|
|
*@li beta2: A scalar of the same type as "var".
|
|
|
|
*@li epsilon: A scalar of the same type as "var".
|
|
|
|
*@li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
*
|
|
|
|
*@par Attributes:\n
|
|
|
|
*@li use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the "var", m", and "v" tensors will be protected
|
|
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
|
|
* contention.
|
|
|
|
*@li use_nesterov: An optional bool. Defaults to "False".
|
|
|
|
If "True", uses the nesterov update.
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
* var: A mutable Tensor. Has the same type as intput "var".
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyAdam)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(m, TensorType::NumberType())
|
|
|
|
.INPUT(v, TensorType::NumberType())
|
|
|
|
.INPUT(beta1_power, TensorType::NumberType())
|
|
|
|
.INPUT(beta2_power, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(beta1, TensorType::NumberType())
|
|
|
|
.INPUT(beta2, TensorType::NumberType())
|
|
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.OUTPUT(m, TensorType::NumberType())
|
|
|
|
.OUTPUT(v, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.ATTR(use_nesterov, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyAdam)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the proximal adadelta scheme.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Seven inputs, including:
|
|
|
|
* @li var: A mutable Tensor of type TensorType::NumberType().
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li accum_update: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li lr: A scalar of the same type as "var", for the scaling factor.
|
|
|
|
* @li rho: A scalar of the same type as "var", for the decay factor.
|
|
|
|
* @li epsilon: A scalar of the same type as "var", for the constant factor.
|
|
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
|
|
* If "True", updating of the "var", "accum" and "accum_update" tensors will be
|
|
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
|
|
* but may exhibit less contention.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*/
|
|
|
|
REG_OP(ApplyAdadelta)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(accum, TensorType::NumberType())
|
|
|
|
.INPUT(accum_update, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(rho, TensorType::NumberType())
|
|
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
|
|
.INPUT(grad, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(ApplyAdadelta)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the ApplyMomentum algorithm. \n
|
|
|
|
* accum = accum * momentum + x1 * x2
|
|
|
|
* if use_nesterov is True:
|
|
|
|
* var -= x1 * x2 * lr + accum * momentum * lr
|
|
|
|
* else:
|
|
|
|
* var -= accum * lr
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Six inputs, including:
|
|
|
|
* @li var: A mutable Tensor of type TensorType::NumberType().
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li lr: A scalar of the same type as "var", for the scaling factor.
|
|
|
|
* @li x1: A Tensor of type TensorType::NumberType().
|
|
|
|
* @li momentum: A scalar of the same type as "var".
|
|
|
|
* @li x2: A Tensor of the same type as "var".
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*Two Attributes, including:
|
|
|
|
*@li use_nesterov: An optional bool. Defaults to "False". \n
|
|
|
|
* If True, the tensor passed to compute grad will be var - lr * momentum * accum, \n
|
|
|
|
* so in the end, the var you get is actually var - lr * momentum * accum.
|
|
|
|
*@li use_locking: An optional bool. Defaults to "False". \n
|
|
|
|
* If "True", updating of the "var", m", and "v" tensors will be protected \n
|
|
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less contention.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*/
|
|
|
|
REG_OP(FusedMulApplyMomentum)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(accum, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(x1, TensorType::NumberType())
|
|
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
|
|
.INPUT(x2, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.ATTR(use_nesterov, Bool, false)
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(FusedMulApplyMomentum)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates "var" according to the ApplyMomentum algorithm. \n
|
|
|
|
* accum = accum * momentum + x1 * x2
|
|
|
|
* if use_nesterov is True:
|
|
|
|
* var -= x1 * x2 * lr + accum * momentum * lr
|
|
|
|
* else:
|
|
|
|
* var -= accum * lr
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Six inputs, including:
|
|
|
|
* @li var: A mutable Tensor of type TensorType::NumberType().
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
|
|
* Should be a Variable Tensor.
|
|
|
|
* @li lr: A scalar of the same type as "var", for the scaling factor.
|
|
|
|
* @li x1: A Tensor of type TensorType::NumberType().
|
|
|
|
* @li momentum: A scalar of the same type as "var".
|
|
|
|
* @li x2: A Tensor of the same type as "var".
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*Two Attributes, including:
|
|
|
|
*@li use_nesterov: An optional bool. Defaults to "False". \n
|
|
|
|
* If True, the tensor passed to compute grad will be var - lr * momentum * accum, \n
|
|
|
|
* so in the end, the var you get is actually var - lr * momentum * accum.
|
|
|
|
*@li use_locking: An optional bool. Defaults to "False". \n
|
|
|
|
* If "True", updating of the "var", m", and "v" tensors will be protected \n
|
|
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less contention.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*Two outputs, including:
|
|
|
|
*@li var: A Tensor. Has the same type as "var".
|
|
|
|
*@li var_copy: A Tensor. Has the same type as "var".
|
|
|
|
*/
|
|
|
|
REG_OP(FusedMulApplyMomentumExtern)
|
|
|
|
.INPUT(var, TensorType::NumberType())
|
|
|
|
.INPUT(accum, TensorType::NumberType())
|
|
|
|
.INPUT(lr, TensorType::NumberType())
|
|
|
|
.INPUT(x1, TensorType::NumberType())
|
|
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
|
|
.INPUT(x2, TensorType::NumberType())
|
|
|
|
.INPUT(var_copy, TensorType::NumberType())
|
|
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
|
|
.OUTPUT(var_copy, TensorType::NumberType())
|
|
|
|
.ATTR(use_nesterov, Bool, false)
|
|
|
|
.ATTR(use_locking, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(FusedMulApplyMomentumExtern)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Update "g" according to the LARS algorithm.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Four inputs, including:
|
|
|
|
* @li w: A Tensor. Must be of type TensorType::DT_FLOAT.
|
|
|
|
* @li g: A Tensor of the same type and shape as "w".
|
|
|
|
* @li weight_decay: A Tensor of the same type as "w", Must be a scalar.
|
|
|
|
* @li learning_rate: A Tensor of the same type as "w", Must be a scalar.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*Three Attributes, including:
|
|
|
|
* @li hyperpara: An optional float. Default value is 0.001.
|
|
|
|
* @li epsilon: An optional float. Default value is 1e-5.Avoid denominator is 0.
|
|
|
|
* @li use_clip: An optional bool. Defaults to "False".\n
|
|
|
|
* If "True", updating learning rate.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*g_new: Tensor of the same type as "w".
|
|
|
|
*/
|
|
|
|
REG_OP(LarsV2)
|
|
|
|
.INPUT(w, TensorType(DT_FLOAT))
|
|
|
|
.INPUT(g, TensorType(DT_FLOAT))
|
|
|
|
.INPUT(weight_decay, TensorType(DT_FLOAT))
|
|
|
|
.INPUT(learning_rate, TensorType(DT_FLOAT))
|
|
|
|
.OUTPUT(g_new, TensorType(DT_FLOAT))
|
|
|
|
.ATTR(hyperpara, Float, 0.001)
|
|
|
|
.ATTR(epsilon, Float, 0.00001)
|
|
|
|
.ATTR(use_clip, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(LarsV2)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Update "g" according to the LARS algorithm.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Six inputs, including:
|
|
|
|
* @li w: A Tensor. Must be of type TensorType::DT_FLOAT.
|
|
|
|
* @li g: A Tensor of the same type and shape as "w".
|
|
|
|
* @li w_square_sum: A Tensor of square_sum(w), has the same type as "w", Must be a scalar.
|
|
|
|
* @li g_square_sum: A Tensor of square(g), has the same type as "w", Must be a scalar.
|
|
|
|
* @li weight_decay: A Tensor of the same type as "w", Must be a scalar.
|
|
|
|
* @li learning_rate: A Tensor of the same type as "w", Must be a scalar.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*Three Attributes, including:
|
|
|
|
* @li hyperpara: An optional float. Default value is 0.001.
|
|
|
|
* @li epsilon: An optional float. Default value is 1e-5.Avoid denominator is 0.
|
|
|
|
* @li use_clip: An optional bool. Defaults to "False".\n
|
|
|
|
* If "True", updating learning rate.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*g_new: Tensor of the same type as "w".
|
|
|
|
*/
|
|
|
|
REG_OP(LarsV2Update)
|
|
|
|
.INPUT(w, TensorType(DT_FLOAT))
|
|
|
|
.INPUT(g, TensorType(DT_FLOAT))
|
|
|
|
.INPUT(w_square_sum, TensorType(DT_FLOAT))
|
|
|
|
.INPUT(g_square_sum, TensorType(DT_FLOAT))
|
|
|
|
.INPUT(weight_decay, TensorType(DT_FLOAT))
|
|
|
|
.INPUT(learning_rate, TensorType(DT_FLOAT))
|
|
|
|
.OUTPUT(g_new, TensorType(DT_FLOAT))
|
|
|
|
.ATTR(hyperpara, Float, 0.001)
|
|
|
|
.ATTR(epsilon, Float, 0.00001)
|
|
|
|
.ATTR(use_clip, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(LarsV2Update)
|
|
|
|
|
|
|
|
} // namespace ge
|
|
|
|
|
|
|
|
#endif // GE_OP_TRAINING_OPS_H
|