You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/inc/framework/common/op/ge_op_utils.h

281 lines
12 KiB

5 years ago
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef INC_FRAMEWORK_COMMON_OP_GE_OP_UTILS_H_
#define INC_FRAMEWORK_COMMON_OP_GE_OP_UTILS_H_
#include <cce/dnn.h>
#include <memory>
#include <vector>
#include "common/op/attr_value_util.h"
#include "common/types.h"
#include "common/util.h"
#include "graph/attr_value.h"
#include "graph/ge_tensor.h"
#include "graph/node.h"
#include "graph/op_desc.h"
#include "proto/insert_op.pb.h"
namespace ge {
using namespace cce;
using domi::Status;
// Add Sub Mul
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const uint32_t ADD_INPUT_NUM;
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const uint32_t SUB_INPUT_NUM;
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const uint32_t MUL_INPUT_NUM;
// Permute
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const int32_t PERMUTE_ORDER_NUM;
// Ssd PriroBox
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const double SSD_PRIORBOX_ASPECT_RATIO_VALUE;
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const uint32_t STRIDEDSLICE_INPUT_NUM;
// Switch
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const uint32_t SWITCH_INPUT_NUM;
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const uint32_t SWITCH_OUTPUT_NUM;
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const uint32_t SWITCH_FALSE_OUTPUT;
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const uint32_t SWITCH_TRUE_OUTPUT;
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const uint32_t SWITCH_DATA_INPUT;
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY extern const uint32_t SWITCH_PRED_INPUT;
class OpUtils {
public:
///
/// @ingroup domi_ome
/// @brief Check whether check_value is in [min_enum_value, max_enum_value]
/// @return true Within
/// @return false out of range
//
static inline bool CheckEnumValid(int32_t check_value, int32_t min_enum_value, int32_t max_enum_value) {
return check_value < min_enum_value ? false : (check_value >= max_enum_value ? false : true);
}
///
/// @ingroup domi_omg
/// @brief Convert the dimension of array according to different format
/// @param [in] src_format src_shape format
/// @param [in] src Dimension array to be converted
/// @param [in] dst_format Target format after conversion
/// @param [out] dst Dimension array after conversion
/// @return SUCCESS success
/// @return FAILED fail
///
static bool ConvertDim(ccTensorFormat_t src_format, const std::vector<int64_t> &src, ccTensorFormat_t dst_format,
std::vector<int64_t> &dst);
///
/// @ingroup domi_omg
/// @brief Determine whether to manually calculate the tensor size based on the values of format and dim
/// @param [in] format, Format information of the tensor
/// @param [in] real_dim_cnt, Tensor dim
/// @return true Manually calculate the size based on dim and datatype
/// @return false skip
///
static bool IsComputDimsSize(const int32_t format, const uint32_t real_dim_cnt);
///
/// @ingroup domi_ome
/// @brief Initialize the tensor description, which is used for input and output.
/// @param [in] model_tensor Tensor information defined by the offline model
/// @param [out] cc_tensor Tensor definition used by CC
/// @return SUCCESS success
/// @return FAILED fail
///
static Status InitTensorDescriptor(const ge::GeTensorDesc &model_tensor, ccTensorDescriptor_t &cc_tensor);
///
/// @ingroup domi_ome
/// @brief Initialize the tensor description, which is used for input and output.
/// @param [in] model_tensor Tensor information defined by the offline model
/// @param [in] dst_data_type data_type of the target cc_tensor
/// @param [out] cc_tensor Tensor definition used by CC
/// @return SUCCESS success
/// @return FAILED fail
///
static Status InitTensorDescriptor(const ge::GeTensorDesc &model_tensor, int32_t dst_data_type,
ccTensorDescriptor_t &cc_tensor);
///
/// @ingroup domi_ome
/// @brief Initialize the tensor description for bias.
/// @param [in] model_tensor Tensor information defined by the offline model
/// @param [out] cc_tensor Tensor definition used by CC
/// @return SUCCESS success
/// @return FAILED fail
///
///
static Status InitTensorDescriptor(const ge::GeTensor &model_tensor, ccTensorDescriptor_t &cc_tensor);
///
/// @ingroup domi_ome
/// @brief Initialize the tensor description for bias.
/// @param [in] model_tensor Tensor information defined by the offline model
/// @param [in] dst_data_type data_type of the target cc_tensor
/// @param [out] cc_tensor Tensor definition used by CC
/// @return SUCCESS success
/// @return FAILED fail
///
static Status InitTensorDescriptor(const ge::GeTensor &model_tensor, int32_t dst_data_type,
ccTensorDescriptor_t &cc_tensor);
static Status InitTensorDescriptor(int32_t format, int32_t data_type, const std::vector<int64_t> &dim,
ccTensorDescriptor_t &cc_tensor, uint32_t real_dim_cnt = 4);
///
/// @ingroup domi_ome
/// @brief Destroys a tensor
/// @param [inout] cc_tensor Tensor definition used by CC
///
static void DestroyTensorDescriptor(ccTensorDescriptor_t &cc_tensor) noexcept;
///
/// @ingroup domi_ome
/// @brief Destroys a tensor
/// @param [inout] cc_filter cc_filter Definition of the filter used by CC
///
static void DestroyFilterDescriptor(ccFilterDescriptor_t &cc_filter);
///
/// @ingroup domi_ome
/// @brief Initializing Filter Description
/// @param [in] model_filter Filter information defined in the offline model
/// @param [out] cc_filter Definition of the filter used by CC
/// @return SUCCESS success
/// @return FAILED fail
///
static Status InitFilterDescriptor(const ge::GeTensor &model_filter, ccFilterDescriptor_t &cc_filter);
///
/// @brief Extract AIPP parameters from AttrDefMap and splice them
/// @param [in] aipp_attr attr of operator
/// @param [out] aipp_params aipp parameters
/// @return enum of tagCCAippInputFormat
///
static Status ConvertAippParams(const GeAttrValue::NamedAttrs &aipp_attr, domi::AippOpParams *aipp_params);
static Status TransferDim(const std::vector<int64_t> &dim, std::vector<int64_t> &dim_vector);
static void SliceData(std::vector<char *> &input, int64_t chunk_size, std::vector<char *> &output, int64_t begin,
int64_t out_dim, int64_t stride);
static Status SetOutputSliceData(void *data, int64_t data_size, int32_t data_type, std::vector<int64_t> &input_dims,
std::vector<int64_t> &begin, std::vector<int64_t> &output_dims, ge::GeTensor *output,
std::vector<int64_t> &stride);
///
/// @ingroup domi_omg
/// @brief Convert the convolution weight data from [h, w, c, k] to [k, c, h, w]
5 years ago
/// @param [in] input Weight data in HWCK format
/// @param [in] H value of H dimension
/// @param [in] W value of W dimension
/// @param [in] C value of C dimension
/// @param [in] K value of K dimension
/// @param [out] output Data pointer after conversion. The format is KCHW.
///
static void TransDataHWCK2KCHW(const void *input, int64_t H, int64_t W, int64_t C, int64_t K, void **output);
///
/// @ingroup domi_omg
/// @brief Converts the convolution weight data from [k, c, h, w] to [h, w, c, k].
5 years ago
/// @param [in] input Weight data in HWCK format
/// @param [in] K value of K dimension
/// @param [in] C value of C dimension
/// @param [in] H value of H dimension
/// @param [in] W value of W dimension
/// @param [out] output Data pointer after conversion. The format is HWCK
///
static void TransDataKCHW2HWCK(const void *input, int64_t K, int64_t C, int64_t H, int64_t W, void *output);
///
/// @ingroup domi_omg
/// @brief Initialize the input and output description of the data node which is applied to filter weight in the
/// training network
/// @param [in] model_tensor input and output tensor information
/// @param [out] cc_tensor Tensor in CCE format after conversion
///
5 years ago
static Status InitFilterTensorDescriptor(const ge::GeTensorDesc &model_tensor, ccFilterDescriptor_t &cc_tensor);
static void SetTensorDescriptorAllOffsetQuantizeInfo(const GeTensorDesc &tensor, ccTensorDescriptor_t cc_tensor);
static vector<ConstGeTensorPtr> GetWeights(const ge::Node &node);
static vector<ConstGeTensorPtr> GetWeights(ge::ConstNodePtr node);
static vector<GeTensorPtr> MutableWeights(const ge::Node &node);
static vector<GeTensorPtr> MutableWeights(const ge::NodePtr node);
static Status SetWeights(ge::Node &node, const vector<ge::GeTensorPtr> &weights);
static Status SetWeights(ge::NodePtr node, const vector<ge::GeTensorPtr> &weights);
static Status GetShapeDataFromConstTensor(const ConstGeTensorPtr &tensor, DataType type, std::vector<int64_t> &dims);
private:
friend class CceTensorDescriptor;
static uint32_t GetRealDimCnt(const GeTensorDesc &tensor_desc);
};
class CceTensorDescriptor;
using CceTensorDescriptorPtr = std::shared_ptr<CceTensorDescriptor>;
class CceTensorDescriptor {
public:
explicit CceTensorDescriptor(ccTensorDescriptor_t cc_tensor);
CceTensorDescriptor(const CceTensorDescriptor &) = delete;
CceTensorDescriptor &operator=(const CceTensorDescriptor &) = delete;
~CceTensorDescriptor();
ccTensorDescriptor_t GetPtr() { return cc_tensor_; }
///
/// @brief Initializes the tensor based on shape information.
/// @param[in] format data permutation format
/// @param[in] data_type Data Type
/// @param[in] dim dim information
/// @return return code
///
Status InitTensor(int32_t format, int32_t data_type, const std::vector<int64_t> &dims);
Status InitTensor(int32_t format, int32_t data_type, const ge::GeShape &shape);
///
/// @brief get format of tensor
/// @param[out] format format of the tensor
/// @return return code
///
Status GetFormat(ccTensorFormat_t *format);
///
/// @brief Obtains the size of the tensor.
/// @param[out] size size of Tensor
/// @return return code
///
Status GetTensorSizeInBytes(uint32_t *size);
///
/// @brief transform tensor between 4d(NCHW) and 5d(NC1HWC0)
/// @param [in] xDesc descriptor of input tensor
/// @param [in] x point to input data in host memory
/// @param [in] dataTypeTransmode mode of data type transform
/// @param [in] yDesc descriptor of output tensor
/// @param [in|out] y point to output data in host memory
/// @param [in] ySizeInBytes size of outputData
/// @return return code
///
static Status TransTensor(const ccTensorDescriptor_t xDesc, const void *x, const CceTensorDescriptorPtr &yDesc,
void *y, uint32_t ySizeInBytes);
///
/// @brief CceTensorDescriptor Static Constructor
/// @return CceTensorDescriptor smart pointer
///
static CceTensorDescriptorPtr Create();
ccTensorDescriptor_t cc_tensor_ = nullptr;
};
} // namespace ge
#endif // INC_FRAMEWORK_COMMON_OP_GE_OP_UTILS_H_