You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/third_party/fwkacllib/inc/ops/rnn.h

155 lines
7.0 KiB

5 years ago
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GE_OP_RNN_H
#define GE_OP_RNN_H
5 years ago
#include "../graph/operator_reg.h"
namespace ge {
/**
*@brief: Basic LSTM Cell forward calculation.
*@par Inputs:
*five inputs: \n
*@li x:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li h:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li w:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li b:A 1D Tensor. Must be one of the following types: float16. The format must be ND.
*@par Attributes:
*@li keep_prob:An integer identifying the keep prob in the op. Default to 1.
*@li forget_bias:An integer identifying the forget bias in the op. Default to 1.
*@li state_is_tuple:An bool identifying if the hidden state and cell state is tuple. Default to true.
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported.
*@par Outputs:
*seven outputs: \n
*@li mask:A 1D Tensor. Must be one of the following types: uint8.
*@li ct:A 4D Tensor. Must be one of the following types: float16, float32.
*@li ht:A 4D Tensor. Must be one of the following types: float16.
*@li it:A 4D Tensor. Must be one of the following types: float16, float32.
*@li jt:A 4D Tensor. Must be one of the following types: float16, float32.
*@li ft:A 4D Tensor. Must be one of the following types: float16, float32.
*@li ot:A 4D Tensor. Must be one of the following types: float16, float32.
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32.
*/
REG_OP(BasicLSTMCell)
.INPUT(x, TensorType({DT_FLOAT16}))
.INPUT(h, TensorType({DT_FLOAT16}))
.INPUT(c, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(w, TensorType({DT_FLOAT16}))
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(mask, TensorType({DT_UINT8}))
.OUTPUT(ct, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(ht, TensorType({DT_FLOAT16}))
.OUTPUT(it, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(jt, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(ft, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(ot, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(tanhct, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(keep_prob, Float, 1.0)
.ATTR(forget_bias, Float, 1.0)
.ATTR(state_is_tuple, Bool, true)
.ATTR(activation, String, "tanh")
.OP_END_FACTORY_REG(BasicLSTMCell)
/**
*@brief: Basic LSTM Cell backward calculation.Calculate the gradient of input and hidden state.
*@par Inputs:
*three inputs: \n
*@li dgate:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li w:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li dropout_mask:A 1D Tensor. Must be one of the following types: uint8. The format must be ND.
*@par Attributes:
*keep_prob:An integer identifying the keep prob in the op. Default to 1.
*@par Outputs:
*two outputs: \n
*@li dxt:A 4D Tensor. Must be one of the following types: float16, float32.
*@li dht:A 4D Tensor. Must be one of the following types: float16, float32.
*/
REG_OP(BasicLSTMCellInputGrad)
.INPUT(dgate, TensorType({DT_FLOAT16}))
.INPUT(w, TensorType({DT_FLOAT16}))
.OPTIONAL_INPUT(dropout_mask, TensorType({DT_UINT8}))
.OUTPUT(dxt, TensorType({DT_FLOAT16}))
.OUTPUT(dht, TensorType({DT_FLOAT16, DT_FLOAT32}))
.ATTR(keep_prob, Float, 1.0)
.OP_END_FACTORY_REG(BasicLSTMCellInputGrad)
/**
*@brief: Basic LSTM Cell backward calculation.Calculate the gradient of weight and bias.
*@par Inputs:
*three inputs: \n
*@li x:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li h:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li dgate:A 4D Tensor. Must be one of the following types: uint8. The format must be FRACTAL_NZ.
*@par Outputs:
*two outputs: \n
*@li dw:A 4D Tensor. Must be one of the following types: float16.
*@li db:A 4D Tensor. Must be one of the following types: float16, float32.
*/
REG_OP(BasicLSTMCellWeightGrad)
.INPUT(x, TensorType({DT_FLOAT16}))
.INPUT(h, TensorType({DT_FLOAT16}))
.INPUT(dgate, TensorType({DT_FLOAT16}))
.OUTPUT(dw, TensorType({DT_FLOAT16}))
.OUTPUT(db, TensorType({DT_FLOAT16, DT_FLOAT32}))
.OP_END_FACTORY_REG(BasicLSTMCellWeightGrad)
/**
*@brief: Basic LSTM Cell backward calculation.Calculate the gradient of gates and cell state.
*@par Inputs:
*eight inputs: \n
*@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dht:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li it:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li jt:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li ft:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li ot:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Attributes:
*@li forget_bias:An integer identifying the forget bias in the op. Default to 1.
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported.
*@par Outputs:
*two outputs: \n
*@li dgate:A 4D Tensor. Must be one of the following types: float16.
*@li dct_1:A 4D Tensor. Must be one of the following types: float16, float32.
*/
REG_OP(BasicLSTMCellCStateGrad)
.INPUT(c, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dht, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dct, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(it, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(jt, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(ft, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(ot, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(tanhct, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dgate, TensorType({DT_FLOAT16}))
.OUTPUT(dct_1, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(forget_bias, Float, 1.0)
.ATTR(activation, String, "tanh")
.OP_END_FACTORY_REG(BasicLSTMCellCStateGrad)
} // namespace ge
#endif // GE_OP_RNN_H