|
|
|
/**
|
|
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef GE_OP_SELECTION_OPS_H
|
|
|
|
#define GE_OP_SELECTION_OPS_H
|
|
|
|
#include "../graph/operator_reg.h"
|
|
|
|
|
|
|
|
namespace ge {
|
|
|
|
/**
|
|
|
|
*@brief Creates a sequence of numbers.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Three inputs, including:
|
|
|
|
* @li start: A 0D Tensor (scalar). Acts as first entry in the range if "limit"
|
|
|
|
* is not "None"; otherwise, acts as range limit and first entry defaults to "0".
|
|
|
|
* The supported types are: float32, int32, double, int64.
|
|
|
|
* @li limit: A 0D Tensor (scalar). Upper limit of sequence, exclusive. If "None",
|
|
|
|
* defaults to the value of "start" while the first entry of the range
|
|
|
|
* defaults to "0". The supported types are: float32, int32, double, int64.
|
|
|
|
* @li delta: A 0D Tensor (scalar). Number that increments "start".
|
|
|
|
* Defaults to "1". The supported types are: float32, int32, double, int64.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A 1D Tensor.
|
|
|
|
*/
|
|
|
|
REG_OP(Range)
|
|
|
|
.INPUT(start, TensorType({DT_FLOAT,DT_INT32,DT_DOUBLE,DT_INT64}))
|
|
|
|
.INPUT(limit, TensorType({DT_FLOAT,DT_INT32,DT_DOUBLE,DT_INT64}))
|
|
|
|
.INPUT(delta, TensorType({DT_FLOAT,DT_INT32,DT_DOUBLE,DT_INT64}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT,DT_INT32,DT_DOUBLE,DT_INT64}))
|
|
|
|
.OP_END_FACTORY_REG(Range)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: Creates a sequence of numbers.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Four inputs, including:
|
|
|
|
* @li x: A 1D Tensor of type float32 or int32. The assistant data.
|
|
|
|
* @li start: A 0D Tensor (scalar) of type float32 or int32. Acts as first entry in the range if "limit"
|
|
|
|
* is not "None"; otherwise, acts as range limit and first entry defaults to "0".
|
|
|
|
* @li limit: A 0D Tensor (scalar) of type float32 or int32.
|
|
|
|
* Upper limit of sequence, exclusive. If "None",
|
|
|
|
* defaults to the value of "start" while the first entry of the range
|
|
|
|
* defaults to "0".
|
|
|
|
* @li delta: A 0D Tensor (scalar) of type float32 or int32.
|
|
|
|
* Number that increments "start". Defaults to "1".
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A 1D Tensor.
|
|
|
|
|
|
|
|
*@par Quantization supported or not
|
|
|
|
*Not supported
|
|
|
|
|
|
|
|
*@par Quantized inference supported or not
|
|
|
|
*Not supported
|
|
|
|
|
|
|
|
*@par Multiple batches supported or not
|
|
|
|
*Supported
|
|
|
|
|
|
|
|
*@see Range()
|
|
|
|
*@since V100R001C33
|
|
|
|
*/
|
|
|
|
REG_OP(RangeD)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT,DT_INT32}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT,DT_INT32}))
|
|
|
|
.REQUIRED_ATTR(start, Float)
|
|
|
|
.REQUIRED_ATTR(limit, Float)
|
|
|
|
.REQUIRED_ATTR(delta, Float)
|
|
|
|
.OP_END_FACTORY_REG(RangeD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Constructs a tensor by tiling a given tensor.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Two inputs, including:
|
|
|
|
* @li x: A Tensor of type TensorType::BasicType().
|
|
|
|
* @li multiples: A 1D Tensor of type int32 or int64.
|
|
|
|
* The length must be the same as the number of dimensions in "input"
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".
|
|
|
|
|
|
|
|
*@see TileD()
|
|
|
|
*/
|
|
|
|
REG_OP(Tile)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.INPUT(multiples, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.OP_END_FACTORY_REG(Tile)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Constructs a tensor by tiling a given tensor.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*x: A Tensor. Must be one of the following types: float32, float16, int32.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*multiples: A required Tensor of type int32 or int64.
|
|
|
|
* Number of replication times.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".
|
|
|
|
|
|
|
|
*@see Tile()
|
|
|
|
*/
|
|
|
|
REG_OP(TileD)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
|
|
|
|
.REQUIRED_ATTR(multiples, ListInt)
|
|
|
|
.OP_END_FACTORY_REG(TileD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Gather slices from "params" into a tensor with shape specified by\n
|
|
|
|
* "indices". "indices" is an K-dimensional integer tensor, best thought of as a\n
|
|
|
|
* (K-1)-dimensional tensor of "indices" into "params", where each element\n
|
|
|
|
* defines a slice of "params":\n
|
|
|
|
* output[\\(i_0, ..., i_{K-2}\\)] = params[indices[\\(i_0, ..., i_{K-2}\\)]]\n
|
|
|
|
* In gather_nd, "indices" defines slices into the first N dimensions of\n
|
|
|
|
* "params", where\n
|
|
|
|
* N = indices.shape[-1]\n
|
|
|
|
* indices = [[0, 0], [1, 1]]\n
|
|
|
|
* params = [['a', 'b'], ['c', 'd']]\n
|
|
|
|
* output = ['a', 'd']\n
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* @li params: A Tensor of type BasicType.
|
|
|
|
* @li indices: A Tensor of type IndexNumberType.
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* output: A Tensor of type BasicType.
|
|
|
|
* @see GatherNd()
|
|
|
|
|
|
|
|
* @attention Constraints:
|
|
|
|
* @li "params" is one of the following types: float16, float32, int32, int8,
|
|
|
|
* uint8.
|
|
|
|
*/
|
|
|
|
REG_OP(GatherNd)
|
|
|
|
.INPUT(x1, TensorType::BasicType())
|
|
|
|
.INPUT(x2, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.OP_END_FACTORY_REG(GatherNd)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Gather slices from "x" according to "indices" by corresponding axis.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Three inputs, including:
|
|
|
|
* @li x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, \n
|
|
|
|
* complex64, int64, qint8, quint8, qint32, qint16, quint16, uint16, \n
|
|
|
|
* complex128, float16, uint32, uint64, complex64, complex128.
|
|
|
|
* @li indices: A Tensor of type int32 or int64.
|
|
|
|
* @li axis: A Tensor of type as int32.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
*Value in indices must be in range [0, x.shape[axis])
|
|
|
|
*/
|
|
|
|
REG_OP(GatherV2)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
|
|
.INPUT(axis, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.OP_END_FACTORY_REG(GatherV2)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Gather slices from "x" according to "indices" by corresponding axis.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Two inputs, including:
|
|
|
|
* @li x: A Tensor. Must be one of the following types: float32, float16, int32, uint32, int8, uint8, \n
|
|
|
|
* int16, uint16, int64, uint64.
|
|
|
|
* @li indices: A Tensor of type int32 or int64.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*axis: A int32 specifying the axis to gather from.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".
|
|
|
|
*/
|
|
|
|
REG_OP(GatherV2D)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_UINT32, DT_INT8, DT_UINT8,
|
|
|
|
DT_INT16, DT_UINT16, DT_INT64, DT_UINT64}))
|
|
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_UINT32, DT_INT8, DT_UINT8,
|
|
|
|
DT_INT16, DT_UINT16, DT_INT64, DT_UINT64}))
|
|
|
|
.REQUIRED_ATTR(axis, Int)
|
|
|
|
.OP_END_FACTORY_REG(GatherV2D)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Extracts a strided slice of a tensor. Roughly speaking, this op \n
|
|
|
|
extracts a slice of size (end-begin)/stride from the given input tensor. \n
|
|
|
|
Starting at the location specified by begin the slice continues by \n
|
|
|
|
adding stride to the index until all dimensions are not less than end. \n
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Four inputs, including:
|
|
|
|
* @li x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, \n
|
|
|
|
* complex64, int64, qint8, quint8, qint32, qint16, quint16, uint16, \n
|
|
|
|
* complex128, float16, uint32, uint64, complex64, complex128. \n
|
|
|
|
* @li begin: A Tensor of type int32 or int64, for the index of the first value to select.
|
|
|
|
|
|
|
|
* @li end: A Tensor of type int32 or int64, for the index of the last value to select.
|
|
|
|
|
|
|
|
* @li strides: A Tensor of type int32 or int64, for the increment.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
* @li begin_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where a bit "i" being "1" means to ignore the begin \n
|
|
|
|
value and instead use the largest interval possible.
|
|
|
|
* @li end_mask: A Tensor of type int32. \n
|
|
|
|
Analogous to "begin_mask".
|
|
|
|
* @li ellipsis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" being "1" means the "i"th position \n
|
|
|
|
is actually an ellipsis.
|
|
|
|
* @li new_axis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" being "1" means the "i"th \n
|
|
|
|
specification creates a new shape 1 dimension.
|
|
|
|
* @li shrink_axis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" implies that the "i"th \n
|
|
|
|
specification should shrink the dimensionality.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".
|
|
|
|
*/
|
|
|
|
REG_OP(StridedSlice)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.INPUT(begin, TensorType::IndexNumberType())
|
|
|
|
.INPUT(end, TensorType::IndexNumberTypeT())
|
|
|
|
.INPUT(strides, TensorType::IndexNumberType())
|
|
|
|
.ATTR(begin_mask, Int, 0)
|
|
|
|
.ATTR(end_mask, Int, 0)
|
|
|
|
.ATTR(ellipsis_mask, Int, 0)
|
|
|
|
.ATTR(new_axis_mask, Int, 0)
|
|
|
|
.ATTR(shrink_axis_mask, Int, 0)
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.OP_END_FACTORY_REG(StridedSlice)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Extracts a strided slice of a tensor. Roughly speaking, this op \n
|
|
|
|
extracts a slice of size "(end-begin)/stride" from the given input tensor. \n
|
|
|
|
Starting at the location specified by "begin" the slice continues by \n
|
|
|
|
adding "stride" to the index until all dimensions are not less than "end".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, \n
|
|
|
|
* complex64, int64, qint8, quint8, qint32, qint16, quint16, uint16, \n
|
|
|
|
* complex128, float16, uint32, uint64, complex64, complex128.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
* @li begin: A Tensor of type int32 or int64. \n
|
|
|
|
The index of the first value to select.
|
|
|
|
* @li end: A Tensor of type int32 or int64. \n
|
|
|
|
The index of the last value to select.
|
|
|
|
* @li strides: A Tensor of type int32 or int64, for the increment. \n
|
|
|
|
* @li begin_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where a bit "i" being "1" means to ignore the begin \n
|
|
|
|
value and instead use the largest interval possible.
|
|
|
|
* @li end_mask: Analogous to "begin_mask". A Tensor of type as int32.
|
|
|
|
* @li ellipsis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" being "1" means the "i"th position \n
|
|
|
|
is actually an ellipsis.
|
|
|
|
* @li new_axis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" being "1" means the "i"th \n
|
|
|
|
specification creates a new shape 1 dimension.
|
|
|
|
* @li shrink_axis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" implies that the "i"th \n
|
|
|
|
specification should shrink the dimensionality.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".
|
|
|
|
*/
|
|
|
|
REG_OP(StridedSliceD)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_UINT8, DT_INT8,
|
|
|
|
DT_BOOL}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_UINT8, DT_INT8,
|
|
|
|
DT_BOOL}))
|
|
|
|
.ATTR(begin, ListInt, {})
|
|
|
|
.ATTR(end, ListInt, {})
|
|
|
|
.ATTR(strides, ListInt, {})
|
|
|
|
.ATTR(begin_mask, Int, 0)
|
|
|
|
.ATTR(end_mask, Int, 0)
|
|
|
|
.ATTR(ellipsis_mask, Int, 0)
|
|
|
|
.ATTR(new_axis_mask, Int, 0)
|
|
|
|
.ATTR(shrink_axis_mask, Int, 0)
|
|
|
|
.OP_END_FACTORY_REG(StridedSliceD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Since StridedSlice cuts out pieces of its "input" which is size "dy", \n
|
|
|
|
its gradient will have the same shape (which is passed here as "shape"). \n
|
|
|
|
The gradient will be zero in any element that the slice does not select.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*dy: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, \n
|
|
|
|
* complex64, int64, qint8, quint8, qint32, qint16, quint16, uint16, \n
|
|
|
|
* complex128, float16, uint32, uint64, complex64, complex128.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
* @li shape: A Tensor of type int32 or int64.
|
|
|
|
* @li begin: A Tensor of type int32 or int64. \n
|
|
|
|
The index of the first value to select.
|
|
|
|
* @li end: A Tensor of type int32 or int64. \n
|
|
|
|
The index of the last value to select.
|
|
|
|
* @li strides: A Tensor of type int32 or int64, for the increment.
|
|
|
|
* @li begin_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where a bit "i" being "1" means to ignore the begin \n
|
|
|
|
value and instead use the largest interval possible.
|
|
|
|
* @li end_mask: A Tensor of type int32. \n
|
|
|
|
Analogous to "begin_mask".
|
|
|
|
* @li ellipsis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" being "1" means the "i"th position \n
|
|
|
|
is actually an ellipsis.
|
|
|
|
* @li new_axis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" being "1" means the "i"th \n
|
|
|
|
specification creates a new shape 1 dimension.
|
|
|
|
* @li shrink_axis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" implies that the "i"th \n
|
|
|
|
specification should shrink the dimensionality.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*output: A Tensor. Has the same type as "dy".
|
|
|
|
*/
|
|
|
|
REG_OP(StridedSliceGradD)
|
|
|
|
.INPUT(dy, TensorType::BasicType())
|
|
|
|
.OUTPUT(output, TensorType::BasicType())
|
|
|
|
.ATTR(shape, ListInt, {})
|
|
|
|
.ATTR(begin, ListInt, {})
|
|
|
|
.ATTR(end, ListInt, {})
|
|
|
|
.ATTR(strides, ListInt, {})
|
|
|
|
.ATTR(begin_mask, Int, 0)
|
|
|
|
.ATTR(end_mask, Int, 0)
|
|
|
|
.ATTR(ellipsis_mask, Int, 0)
|
|
|
|
.ATTR(new_axis_mask, Int, 0)
|
|
|
|
.ATTR(shrink_axis_mask, Int, 0)
|
|
|
|
.OP_END_FACTORY_REG(StridedSliceGradD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Since StridedSlice cuts out pieces of its "input" which is size "dy", \n
|
|
|
|
its gradient will have the same shape (which is passed here as "shape"). \n
|
|
|
|
The gradient will be zero in any element that the slice does not select.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Five inputs, including:
|
|
|
|
* @li shape: A Tensor of type int32 or int64.
|
|
|
|
* @li begin: A Tensor of type int32 or int64. \n
|
|
|
|
The index of the first value to select.
|
|
|
|
* @li end: A Tensor of type int32 or int64. \n
|
|
|
|
The index of the last value to select.
|
|
|
|
* @li strides: A Tensor of type int32 or int64, for the increment.
|
|
|
|
* @li dy: A Tensor. Must be one of the following types: \n
|
|
|
|
* float32, float64, int32, uint8, int16, int8, \n
|
|
|
|
* complex64, int64, qint8, quint8, qint32, qint16, quint16, uint16, \n
|
|
|
|
* complex128, float16, uint32, uint64, complex64, complex128.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
* @li begin_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where a bit "i" being "1" means to ignore the begin \n
|
|
|
|
value and instead use the largest interval possible.
|
|
|
|
* @li end_mask: A Tensor of type int32. \n
|
|
|
|
Analogous to "begin_mask".
|
|
|
|
* @li ellipsis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" being "1" means the "i"th position \n
|
|
|
|
is actually an ellipsis.
|
|
|
|
* @li new_axis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" being "1" means the "i"th \n
|
|
|
|
specification creates a new shape 1 dimension.
|
|
|
|
* @li shrink_axis_mask: A Tensor of type int32. \n
|
|
|
|
A bitmask where bit "i" implies that the "i"th \n
|
|
|
|
specification should shrink the dimensionality.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*output: A Tensor has the same type as "dy".
|
|
|
|
*/
|
|
|
|
REG_OP(StridedSliceGrad)
|
|
|
|
.INPUT(shape, TensorType::IndexNumberType())
|
|
|
|
.INPUT(begin, TensorType::IndexNumberType())
|
|
|
|
.INPUT(end, TensorType::IndexNumberType())
|
|
|
|
.INPUT(strides, TensorType::IndexNumberType())
|
|
|
|
.INPUT(dy, TensorType::BasicType())
|
|
|
|
.OUTPUT(output, TensorType::BasicType())
|
|
|
|
.ATTR(begin_mask, Int, 0)
|
|
|
|
.ATTR(end_mask, Int, 0)
|
|
|
|
.ATTR(ellipsis_mask, Int, 0)
|
|
|
|
.ATTR(new_axis_mask, Int, 0)
|
|
|
|
.ATTR(shrink_axis_mask, Int, 0)
|
|
|
|
.OP_END_FACTORY_REG(StridedSliceGrad)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Computes the sum along segments of a tensor.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Three inputs, including:
|
|
|
|
* @li x: A Tensor of type NumberType.
|
|
|
|
* @li segment_ids: A 1D Tensor of type IndexNumberType, whose shape is a prefix
|
|
|
|
* of "x.shape".
|
|
|
|
* @li num_segments: A Tensor of type IndexNumberType.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor of type RealNumberType.
|
|
|
|
*/
|
|
|
|
REG_OP(UnsortedSegmentSum)
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
.INPUT(segment_ids, TensorType::IndexNumberType())
|
|
|
|
.INPUT(num_segments, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
.OP_END_FACTORY_REG(UnsortedSegmentSum)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Computes the sum along segments of a tensor.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Two inputs, including:
|
|
|
|
* @li x: A Tensor of type float16, float32, int32, int8, uint8.
|
|
|
|
* @li segment_ids: A 1D Tensor of type int32, whose shape is a prefix
|
|
|
|
* of "x.shape".
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*num_segments: An int32, specifying the number of distinct segment IDs.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor with same type as "x".
|
|
|
|
*/
|
|
|
|
REG_OP(UnsortedSegmentSumD)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8, DT_UINT8}))
|
|
|
|
.INPUT(segment_ids, TensorType({DT_INT32}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8, DT_UINT8}))
|
|
|
|
.REQUIRED_ATTR(num_segments, Int)
|
|
|
|
.OP_END_FACTORY_REG(UnsortedSegmentSumD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Reverses specific dimensions of a tensor.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
* Two inputs, including:\n
|
|
|
|
*@li x: An ND Tensor (up to 8D). \n
|
|
|
|
*Must be one of the following types: int8, uint8, int16, uint16, int32, int64, bool, float32, double
|
|
|
|
*@li axis: A 1D Tensor.\n
|
|
|
|
*Must be one of the following types: int32, int64
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type and format as "x"
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
"axis" must be within the rank of "x".
|
|
|
|
*/
|
|
|
|
REG_OP(ReverseV2)
|
|
|
|
.INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32,
|
|
|
|
DT_INT64, DT_BOOL, DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
|
|
|
|
DT_COMPLEX64, DT_COMPLEX128, DT_STRING}))
|
|
|
|
.INPUT(axis, TensorType({DT_INT32,DT_INT64}))
|
|
|
|
.OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32,
|
|
|
|
DT_INT64, DT_BOOL, DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
|
|
|
|
DT_COMPLEX64, DT_COMPLEX128, DT_STRING}))
|
|
|
|
.OP_END_FACTORY_REG(ReverseV2)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Reverses specific dimensions of a tensor.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
* One input:
|
|
|
|
*@li x: An ND Tensor (up to 8D). \n
|
|
|
|
*Must be one of the following types: int8, uint8, int16, uint16, int32, int64, bool, float32, double
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*axis: The indices of the dimensions to reverse.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type and format as "x"
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
"axis" must be within the rank of "x".
|
|
|
|
*/
|
|
|
|
REG_OP(ReverseExt2)
|
|
|
|
.INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32,
|
|
|
|
DT_INT64, DT_BOOL, DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
|
|
|
|
DT_COMPLEX64, DT_COMPLEX128, DT_STRING}))
|
|
|
|
.OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32,
|
|
|
|
DT_INT64, DT_BOOL, DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
|
|
|
|
DT_COMPLEX64, DT_COMPLEX128, DT_STRING}))
|
|
|
|
.REQUIRED_ATTR(axis, ListInt)
|
|
|
|
.OP_END_FACTORY_REG(ReverseExt2)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: Selects elements from "x1" or "x2", depending on "condition".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
* Three inputs, including:
|
|
|
|
* @li condition: A Tensor of type bool.
|
|
|
|
* @li x1: A Tensor. Must be one of the following types: float16, float32, int32, int8, uint8.
|
|
|
|
* @li x2: A Tensor of the same type as "x1".
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x1".
|
|
|
|
*/
|
|
|
|
REG_OP(Select)
|
|
|
|
.INPUT(condition, TensorType({DT_BOOL}))
|
|
|
|
.INPUT(x1,TensorType::BasicType())
|
|
|
|
.INPUT(x2,TensorType::BasicType())
|
|
|
|
.OUTPUT(y,TensorType::BasicType())
|
|
|
|
.OP_END_FACTORY_REG(Select)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: Computes the maximum along segments of a tensor.
|
|
|
|
*Computes a tensor such that output[i]=(data[i]) where max is over j such that segment_ids[j] == i.
|
|
|
|
*If the max is empty for a given segment ID i, output[i] = 0
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Two inputs, include:
|
|
|
|
* @li x:A Tensor of type float16, float32, int32,int8,uint8.
|
|
|
|
* @li segment_ids:should be the size of the first dimension
|
|
|
|
must sorted and need not cover all values in the full range of valid values
|
|
|
|
must be positive intege
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y:A Tensor with same type as "x".
|
|
|
|
*/
|
|
|
|
REG_OP(SegmentMax)
|
|
|
|
.INPUT(x, TensorType::RealNumberType())
|
|
|
|
.INPUT(segment_ids, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::RealNumberType())
|
|
|
|
.OP_END_FACTORY_REG(SegmentMax)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: Computes the maximum along segments of a tensor.
|
|
|
|
*Computes a tensor such that output[i]=(data[i]) where max is over j such that segment_ids[j] == i.
|
|
|
|
*If the max is empty for a given segment ID i, output[i] = 0
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*One inputs, include:
|
|
|
|
* @li x:A Tensor of type float16, float32, int32, int8,uint8 .
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
* @li segment_ids:should be the size of the first dimension
|
|
|
|
must sorted and need not cover all values in the full range of valid values
|
|
|
|
must be positive intege
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y:A Tensor with same type as "x".
|
|
|
|
*/
|
|
|
|
REG_OP(SegmentMaxD)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
|
|
|
|
.REQUIRED_ATTR(segment_ids, ListInt)
|
|
|
|
.OP_END_FACTORY_REG(SegmentMaxD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Returns a one-hot tensor. The locations represented by index in "x" take value "on_value",
|
|
|
|
* while all other locations take value "off_value".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Four inputs, including:
|
|
|
|
* @li x: A Tensor of indices. Must be one of the following types: int32, uint8, int64.
|
|
|
|
* @li depth: A scalar of type int32. The depth of the one hot dimension.
|
|
|
|
* @li on_value: A scalar. The value to fill in output when indices[j] = i,
|
|
|
|
* Must be one of the following types: float16, float32, int32, int8, uint8.
|
|
|
|
* @li off_value: A scalar. The value to fill in output when indices[j] != i,
|
|
|
|
* Has the same type as "on_value".
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*axis: An int. The axis to fill. Defaults to "-1".
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "on_value".
|
|
|
|
*/
|
|
|
|
REG_OP(OneHot)
|
|
|
|
.INPUT(x, TensorType({DT_UINT8, DT_INT32, DT_INT64}))
|
|
|
|
.INPUT(depth, TensorType({DT_INT32}))
|
|
|
|
.INPUT(on_value, TensorType::BasicType())
|
|
|
|
.INPUT(off_value, TensorType::BasicType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.ATTR(axis, Int, -1)
|
|
|
|
.OP_END_FACTORY_REG(OneHot)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Returns a one-hot tensor. The locations represented by index in "x" take value "on_value",
|
|
|
|
* while all other locations take value "off_value".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Three inputs, including:
|
|
|
|
*@li x: A Tensor of indices. Must be one of the following types: int32, uint8, int64.
|
|
|
|
*@li on_value: A scalar. The value to fill in output when indices[j] = i,
|
|
|
|
* Must be one of the following types: float16, float32, int32, int8, uint8.
|
|
|
|
*@li off_value: A scalar. The value to fill in output when indices[j] != i,
|
|
|
|
* Has the same type as "on_value".
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*@li depth: A scalar of type int32. The depth of the one hot dimension.
|
|
|
|
*@li axis: An int. The axis to fill. Defaults to "-1".
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "on_value".
|
|
|
|
*/
|
|
|
|
REG_OP(OneHotD)
|
|
|
|
.INPUT(x, TensorType({DT_UINT8, DT_INT32}))
|
|
|
|
.INPUT(on_value, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT8,
|
|
|
|
DT_INT8}))
|
|
|
|
.INPUT(off_value, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT8,
|
|
|
|
DT_INT8}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT8, DT_INT8}))
|
|
|
|
.REQUIRED_ATTR(depth, Int)
|
|
|
|
.ATTR(axis, Int, -1)
|
|
|
|
.OP_END_FACTORY_REG(OneHotD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Extracts a slice from a tensor.\n
|
|
|
|
This operation extracts a slice of size "size" from a tensor "x" starting at the location specified by "begin".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*@li x: A Tensor. Must be one of the following types: float16, float32, int8, int16, int32, int64, uint8, uint16, uint32, uint64.
|
|
|
|
*@li begin: A Tensor of type int32 or int64. The starting location for the slice.
|
|
|
|
*@li size: A Tensor of type int32 or int64. The tensor shape.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x". The slice extracted from the tensor.
|
|
|
|
*/
|
|
|
|
REG_OP(Slice)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.INPUT(begin, TensorType::IndexNumberType())
|
|
|
|
.INPUT(size, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.OP_END_FACTORY_REG(Slice)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Extracts a slice from a tensor.\n
|
|
|
|
This operation extracts a slice of size "size" from a tensor "x" starting at the location specified by "begin".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*x: A Tensor. Must be one of the following types: float16, float32, int8, int16, int32, int64, uint8, uint16, uint32, uint64.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*@li begin: The starting location for the slice.
|
|
|
|
*@li size: The tensor shape.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x". The slice extracted from the tensor.
|
|
|
|
*/
|
|
|
|
REG_OP(SliceD)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.REQUIRED_ATTR(begin,ListInt)
|
|
|
|
.REQUIRED_ATTR(size,ListInt)
|
|
|
|
.OP_END_FACTORY_REG(SliceD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Finds values and indices of the "k" largest elements for the last
|
|
|
|
* dimension.
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* @li input: A 1D or higher tensor of type float16, with the last dimension at
|
|
|
|
* least "k".
|
|
|
|
* Specifies the data to sort.
|
|
|
|
* @li assist_seq: A 1D tensor of type float16.
|
|
|
|
* With values 0, 1, 2, ..., N-1, where "N" is the last dimension.
|
|
|
|
|
|
|
|
* @par Attributes:
|
|
|
|
* k: An int that is at least 0, specifying the number of top elements to look\n
|
|
|
|
* for along the last dimension (along each row for matrices).
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* @li values: A Tensor, specifying the sorted data. Has the same type as "input".
|
|
|
|
* @li indices: A Tensor of type int32, specifying the indices of sorted data.
|
|
|
|
|
|
|
|
* @attention Constraints:
|
|
|
|
* @li k =< 4096
|
|
|
|
* @li Size of the last dimension =< 65500
|
|
|
|
|
|
|
|
* @see TopKV2()
|
|
|
|
*/
|
|
|
|
REG_OP(TopK)
|
|
|
|
.INPUT(input, TensorType::RealNumberType())
|
|
|
|
.INPUT(assist_seq, TensorType({DT_FLOAT16}))
|
|
|
|
.OUTPUT(values, TensorType::RealNumberType())
|
|
|
|
.OUTPUT(indices, TensorType({DT_INT32}))
|
|
|
|
.ATTR(k, Int, 0)
|
|
|
|
.OP_END_FACTORY_REG(TopK)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Finds values and indices of the "k" largest elements for the last
|
|
|
|
* dimension.
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* @li input: A 1D or higher tensor of type BasicType, with the last dimension
|
|
|
|
* at least "k".
|
|
|
|
* @li k: A 0D Tensor of type int32.\n
|
|
|
|
* Number of top elements to look for along the last dimension (along each row
|
|
|
|
* for matrices).
|
|
|
|
|
|
|
|
* @par Attributes:
|
|
|
|
* @li sorted: An optional bool. Defaults to true.\n
|
|
|
|
* If true, the resulting "k" elements will be sorted by the values in descending
|
|
|
|
* order.
|
|
|
|
* @li T: Indicator of indices type.
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* @li values: A Tensor, specifying the sorted data. Has the same type as
|
|
|
|
* "input".
|
|
|
|
* @li indices: A Tensor of type int32, specifying the indices of sorted data.
|
|
|
|
|
|
|
|
* @see TopK()
|
|
|
|
*/
|
|
|
|
REG_OP(TopKV2)
|
|
|
|
.INPUT(input, TensorType::RealNumberType())
|
|
|
|
.INPUT(k, TensorType({DT_INT32}))
|
|
|
|
.OUTPUT(values, TensorType::RealNumberType())
|
|
|
|
.OUTPUT(indices, TensorType({DT_INT32}))
|
|
|
|
.ATTR(sorted, Bool, true)
|
|
|
|
.ATTR(T, Int, 0)
|
|
|
|
.OP_END_FACTORY_REG(TopKV2)
|
|
|
|
/**
|
|
|
|
*@brief Creates a new tensor by applying sparse "updates" to individual values or slices within a tensor (initially zero for numeric, empty for string) of the given "shape" according to "indices".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Inputs including: \n
|
|
|
|
* @li indices: A required index tensor. Must be one of the following types: float32, float16, int32, int8, uint8.
|
|
|
|
* @li updates: A required slice tensor. Must be one of the following types: float32, float16, int32, int8, uint8.
|
|
|
|
* @li shape: A required list of int32, specifying the output shape.
|
|
|
|
*@par Outputs:
|
|
|
|
*y:A output Tensor with same datatype as "updates".
|
|
|
|
|
|
|
|
*@attention Constraints:\n
|
|
|
|
*@li "y" has the same shape as "shape".
|
|
|
|
*@li "y" has the same type as "updates".
|
|
|
|
*/
|
|
|
|
REG_OP(ScatterNd)
|
|
|
|
.INPUT(indices, TensorType::BasicType())
|
|
|
|
.INPUT(updates, TensorType::BasicType())
|
|
|
|
.INPUT(shape, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.OP_END_FACTORY_REG(ScatterNd)
|
|
|
|
/**
|
|
|
|
*@brief Creates a new tensor by applying sparse "updates" to individual values or slices within a tensor (initially zero for numeric, empty for string) of the given "shape" according to "indices".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Inputs including: \n
|
|
|
|
* @li indices: A required index tensor. Must be one of the following types: float32, float16, int32, int8, uint8.
|
|
|
|
* @li updates: A required slice tensor. Must be one of the following types: float32, float16, int32, int8, uint8.
|
|
|
|
*@par Attributes:
|
|
|
|
* @li shape: A required list of int32, specifying the output shape.
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "updates".
|
|
|
|
|
|
|
|
*@attention Constraints:\n
|
|
|
|
*@li "y" has the same shape as "shape".
|
|
|
|
*@li "y" has the same type as "updates".
|
|
|
|
*/
|
|
|
|
REG_OP(ScatterNdD)
|
|
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
|
|
.INPUT(updates, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16}))
|
|
|
|
.ATTR(shape, ListInt,{})
|
|
|
|
.OP_END_FACTORY_REG(ScatterNdD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Says whether the targets are in the top "k" predictions.\n
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* Three inputs, including:
|
|
|
|
* @li x1: A 2D Tensor of type float32. A "batch_size * classes" tensor.
|
|
|
|
* @li x2: A 1D Tensor of type IndexNumberType. A batch_size tensor of class ids.
|
|
|
|
* @li k: A 1D Tensor of the same type as "x2".
|
|
|
|
* Specifies the number of top elements to look at for computing precision.
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* y: A Tensor of type bool.
|
|
|
|
|
|
|
|
* @see InTopK()
|
|
|
|
*/
|
|
|
|
REG_OP(InTopKExt2)
|
|
|
|
.INPUT(x1, TensorType({DT_FLOAT}))
|
|
|
|
.INPUT(x2, TensorType({IndexNumberType}))
|
|
|
|
.INPUT(k, TensorType({IndexNumberType}))
|
|
|
|
.OUTPUT(y, TensorType({DT_BOOL}))
|
|
|
|
.OP_END_FACTORY_REG(InTopKExt2)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Says whether the targets are in the top "k" predictions\n
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* Two inputs, including:
|
|
|
|
* @li x1: A 2D Tensor of type float32. A "batch_size * classes" tensor.
|
|
|
|
* @li x2: A 1D Tensor of type IndexNumberType. A batch_size tensor of class ids.
|
|
|
|
|
|
|
|
* @par Attributes:
|
|
|
|
* @li k: An optional int32, specifying the number of top elements to look at for
|
|
|
|
* computing precision.
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* y: A Tensor of type bool.
|
|
|
|
*/
|
|
|
|
REG_OP(InTopK)
|
|
|
|
.INPUT(x1, TensorType({DT_FLOAT}))
|
|
|
|
.INPUT(x2, TensorType(IndexNumberType))
|
|
|
|
.ATTR(k, Int, 1)
|
|
|
|
.OUTPUT(y, TensorType({DT_BOOL}))
|
|
|
|
.OP_END_FACTORY_REG(InTopK)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Assigns "value" to the sliced l-value reference of "var".\n
|
|
|
|
* The values of "value" are assigned to the positions in the variable. "var"\n
|
|
|
|
* that are selected by the slice parameters. The slice parameters "begin, "end",\n
|
|
|
|
* "strides", etc. work exactly as in "StridedSlice".
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* @li var: A mutable ND Tensor of type BasicType.
|
|
|
|
* @li begin: A mutable ND Tensor of type IndexNumberType.
|
|
|
|
* Specifies the index of the first value to select.
|
|
|
|
* @li end: A mutable ND Tensor of type IndexNumberType.
|
|
|
|
* Specifies the index of the last value to select.
|
|
|
|
* @li strides: A mutable ND Tensor of type IndexNumberType.
|
|
|
|
* Specifies the stride to select.
|
|
|
|
* @li input_value: A mutable ND Tensor of type BasicType.
|
|
|
|
|
|
|
|
* @par Attributes:
|
|
|
|
* @li begin_mask: An optional int. Defaults to "0".
|
|
|
|
* @li end_mask: An optional int. Defaults to "0".
|
|
|
|
* @li ellipsis_mask: An optional int. Defaults to "0".
|
|
|
|
* @li new_axis_mask: An optional int. Defaults to "0".
|
|
|
|
* @li shrink_axis_mask: An optional int. Defaults to "0".
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* var: A mutable Tensor. Has the same type as "var".
|
|
|
|
|
|
|
|
* @attention Constraints:
|
|
|
|
* This operator currently does not support broadcasting. Therefore, the shape
|
|
|
|
* of "value" must be exactly the shape produced by the slice of "var".
|
|
|
|
|
|
|
|
* @see StridedSlice()
|
|
|
|
*/
|
|
|
|
REG_OP(StridedSliceAssign)
|
|
|
|
.INPUT(var, TensorType(BasicType))
|
|
|
|
.INPUT(begin, TensorType(IndexNumberType))
|
|
|
|
.INPUT(end, TensorType(IndexNumberType))
|
|
|
|
.INPUT(strides, TensorType(IndexNumberType))
|
|
|
|
.INPUT(input_value, TensorType(BasicType))
|
|
|
|
.OUTPUT(var, TensorType(BasicType))
|
|
|
|
.ATTR(begin_mask, Int, 0)
|
|
|
|
.ATTR(end_mask, Int, 0)
|
|
|
|
.ATTR(ellipsis_mask, Int, 0)
|
|
|
|
.ATTR(new_axis_mask, Int, 0)
|
|
|
|
.ATTR(shrink_axis_mask, Int, 0)
|
|
|
|
.OP_END_FACTORY_REG(StridedSliceAssign)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Assigns "value" to the sliced l-value reference of "var".\n
|
|
|
|
* The values of "value" are assigned to the positions in the variable. "var"\n
|
|
|
|
* that are selected by the slice parameters. The slice parameters "begin, "end",\n
|
|
|
|
* "strides", etc. work exactly as in "StridedSlice".
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* @li var: A mutable ND Tensor of type BasicType.
|
|
|
|
* @li input_value: A mutable ND "Tensor" of type BasicType.
|
|
|
|
|
|
|
|
|
|
|
|
* @par Attributes:
|
|
|
|
* @li begin: A required list of ints.
|
|
|
|
* Specifies the index of the first value to select.
|
|
|
|
* @li end: A required list of ints.
|
|
|
|
* Specifies the index of the last value to select.
|
|
|
|
* @li strides: A required list of ints. Specifies the stride to select.
|
|
|
|
* @li begin_mask: An optional int. Defaults to "0".
|
|
|
|
* @li end_mask: An optional int. Defaults to "0".
|
|
|
|
* @li ellipsis_mask: An optional int. Defaults to "0".
|
|
|
|
* @li new_axis_mask: An optional int. Defaults to "0".
|
|
|
|
* @li shrink_axis_mask: An optional int. Defaults to "0".
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* var: A mutable Tensor. Has the same type as input "var".
|
|
|
|
|
|
|
|
* @attention Constraints:
|
|
|
|
* This operator currently does not support broadcasting. Therefore, the shape of
|
|
|
|
* "value" shape must be exactly the shape produced by the slice of "var".
|
|
|
|
|
|
|
|
* @see StridedSlice()
|
|
|
|
*/
|
|
|
|
REG_OP(StridedSliceAssignD)
|
|
|
|
.INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
|
|
|
|
.INPUT(input_value, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
|
|
|
|
.OUTPUT(var, TensorType(BasicType))
|
|
|
|
.ATTR(begin, ListInt, {})
|
|
|
|
.ATTR(end, ListInt, {})
|
|
|
|
.ATTR(strides, ListInt, {})
|
|
|
|
.ATTR(begin_mask, Int, 0)
|
|
|
|
.ATTR(end_mask, Int, 0)
|
|
|
|
.ATTR(ellipsis_mask, Int, 0)
|
|
|
|
.ATTR(new_axis_mask, Int, 0)
|
|
|
|
.ATTR(shrink_axis_mask, Int, 0)
|
|
|
|
.OP_END_FACTORY_REG(StridedSliceAssignD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Gather slices from "params" according to "indices"."indices" must be \n
|
|
|
|
an integer tensor of any dimension(usually 0-D or 1-D). \n
|
|
|
|
Produces an output tensor with shape "indices.shape + params.shape[1:]".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Two inputs, including:
|
|
|
|
* @li x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, \n
|
|
|
|
* complex64, int64, qint8, quint8, qint32, qint16, quint16, uint16, \n
|
|
|
|
* complex128, float16, uint32, uint64, complex64, complex128.
|
|
|
|
* @li indices: A Tensor of type int32 or int64.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*validate_indices: A bool specifying whether to verify the argument of "indice".
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
* "indices" is in the range [0, x.shape[0]).
|
|
|
|
*/
|
|
|
|
REG_OP(Gather)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.ATTR(validate_indices, Bool, true)
|
|
|
|
.OP_END_FACTORY_REG(Gather)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Computes the cumulative product of the tensor "x" along "axis".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
* Two inputs, including:
|
|
|
|
*@li x: A Tensor. Must be one of the following types: int32, float32, float16, int8, uint8.
|
|
|
|
*@li axis A Tensor of type int32. Defaults to "0".
|
|
|
|
*
|
|
|
|
*@par Attributes:
|
|
|
|
*@li exclusive: If "False", performs inclusive cumprod, which means that the first element of the input is identical to the first element of the output. If "True", performs exclusive cumprod.
|
|
|
|
*@li reverse: A bool. Defaults to "False".
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".
|
|
|
|
*/
|
|
|
|
REG_OP(Cumprod)
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
.INPUT(axis, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
.ATTR(exclusive, Bool, false)
|
|
|
|
.ATTR(reverse, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(Cumprod)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Computes the cumulative product of the tensor "x" along "axis".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
* One input:
|
|
|
|
*x: A Tensor. Must be one of the following types: int32, float32, float16, int8, uint8.
|
|
|
|
*
|
|
|
|
*@par Attributes:
|
|
|
|
*@li axis A Tensor of type int32. Defaults to "0".
|
|
|
|
*@li exclusive: If "False", performs inclusive cumprod, which means that the first element of the input is identical to the first element of the output. If "True", performs exclusive cumprod.
|
|
|
|
*@li reverse: A bool. Defaults to "False".
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".
|
|
|
|
*/
|
|
|
|
REG_OP(CumprodD)
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
.REQUIRED_ATTR(axis, Int)
|
|
|
|
.ATTR(exclusive, Bool, false)
|
|
|
|
.ATTR(reverse, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(CumprodD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Computes the cumulative sum of the tensor "x" along "axis".
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
* Two inputs, including:
|
|
|
|
*@li x: A Tensor. Must be one of the following types: int32, float32, float16, int8, uint8.
|
|
|
|
*@li axis A Tensor of type int32. Defaults to "0".
|
|
|
|
*
|
|
|
|
*@par Attributes:
|
|
|
|
*@li exclusive: If "False", performs inclusive cumsum, which means that the first element of the input is identical to the first element of the output. If "True", performs exclusive cumsum.
|
|
|
|
*@li reverse: A bool. Defaults to "False".
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
*@li y: A Tensor. Has the same type as "x".
|
|
|
|
*/
|
|
|
|
REG_OP(Cumsum)
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
.INPUT(axis, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
.ATTR(exclusive, Bool, false)
|
|
|
|
.ATTR(reverse, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(Cumsum)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Computes the cumulative sum of the tensor "x" along "axis".
|
|
|
|
*
|
|
|
|
*@par Inputs:
|
|
|
|
* One input:
|
|
|
|
*x: A Tensor. Must be one of the following types: int32, float32, float16, int8, uint8.
|
|
|
|
*
|
|
|
|
*@par Attributes:
|
|
|
|
*@li axis A Tensor of type int32. Defaults to "0".
|
|
|
|
*@li exclusive: If "False", performs inclusive cumsum, which means that the first element of the input is identical to the first element of the output. If "True", performs exclusive cumsum.
|
|
|
|
*@li reverse: A bool. Defaults to "False".
|
|
|
|
*
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".
|
|
|
|
*/
|
|
|
|
REG_OP(CumsumD)
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
.REQUIRED_ATTR(axis, Int)
|
|
|
|
.ATTR(exclusive, Bool, false)
|
|
|
|
.ATTR(reverse, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(CumsumD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates specified rows with values in v. \n
|
|
|
|
*Computes x[i, :] = v; return x.
|
|
|
|
*@par Inputs:
|
|
|
|
*Three inputs, including:
|
|
|
|
* @li x: A Tensor. \n
|
|
|
|
* TensorType::NumberType().
|
|
|
|
* @li indices: A vector of type int32. \n
|
|
|
|
* Indices into the left-most dimension of "x".
|
|
|
|
* @li v: A Tensor of the same type as "x". \n
|
|
|
|
* Same dimension sizes as x except the first dimension, \n
|
|
|
|
* which must be the same as the size of "indices".
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor of the same type as "x". \n
|
|
|
|
* An alias of "x". The content of "y" is undefined if there are duplicates in indices.
|
|
|
|
*/
|
|
|
|
REG_OP(InplaceUpdate)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.INPUT(indices, TensorType({DT_INT32}))
|
|
|
|
.INPUT(v, TensorType::BasicType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.OP_END_FACTORY_REG(InplaceUpdate)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Updates specified rows with values in v. \n
|
|
|
|
*Computes x[i, :] = v; return x.
|
|
|
|
*@par Inputs:
|
|
|
|
*Two inputs, including:
|
|
|
|
* @li x: A Tensor. \n
|
|
|
|
* TensorType::NumberType().
|
|
|
|
* @li v: A Tensor of the same type as "x". \n
|
|
|
|
* Same dimension sizes as "x" except the first dimension, which must be the same as the size of "indices".
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*indices: A required list of ints. Indices into the left-most dimension of "x".
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor of the same type as "x". \n
|
|
|
|
* An alias of "x". The content of "y" is undefined if there are duplicates in indices.
|
|
|
|
*/
|
|
|
|
REG_OP(InplaceUpdateD)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.INPUT(v, TensorType::BasicType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.REQUIRED_ATTR(indices, ListInt)
|
|
|
|
.OP_END_FACTORY_REG(InplaceUpdateD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Adds "v" into specified rows of "x". \n
|
|
|
|
*Computes y = x; y[i, :] += v.
|
|
|
|
*@par Inputs:
|
|
|
|
*Three inputs, including:
|
|
|
|
* @li x: A Tensor. \n
|
|
|
|
* TensorType::NumberType().
|
|
|
|
* @li indices: A vector of type int32. \n
|
|
|
|
* Indices into the left-most dimension of "x".
|
|
|
|
* @li v: A Tensor of the same type as "x". \n
|
|
|
|
* Same dimension sizes as x except the first dimension, \n
|
|
|
|
* which must be the same as the size of "indices".
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor of the same type as "x". \n
|
|
|
|
* An alias of "x". The content of "y" is undefined if there are duplicates in indices.
|
|
|
|
*/
|
|
|
|
REG_OP(InplaceAdd)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.INPUT(indices, TensorType({DT_INT32}))
|
|
|
|
.INPUT(v, TensorType::BasicType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.OP_END_FACTORY_REG(InplaceAdd)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Adds "v" into specified rows of "x". \n
|
|
|
|
*Computes y = x; y[i, :] += v.
|
|
|
|
*@par Inputs:
|
|
|
|
*Two inputs, including:
|
|
|
|
* @li x: A Tensor. \n
|
|
|
|
* TensorType::NumberType().
|
|
|
|
* @li v: A Tensor of the same type as "x". \n
|
|
|
|
* Same dimension sizes as "x" except the first dimension, which must be the same as the size of "indices".
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*indices: A required list of ints. Indices into the left-most dimension of "x".
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor of the same type as "x". \n
|
|
|
|
* An alias of "x". The content of "y" is undefined if there are duplicates in indices.
|
|
|
|
*/
|
|
|
|
REG_OP(InplaceAddD)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.INPUT(v, TensorType::BasicType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.REQUIRED_ATTR(indices, ListInt)
|
|
|
|
.OP_END_FACTORY_REG(InplaceAddD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Subtracts "v" into specified rows of "x". \n
|
|
|
|
*Computes y = x; y[i, :] -= v; return y.
|
|
|
|
*@par Inputs:
|
|
|
|
**Three inputs, including:
|
|
|
|
* @li x: A Tensor. TensorType::NumberType().
|
|
|
|
* @li indices: A vector of type int32. Indices into the left-most dimension of x.
|
|
|
|
* @li v: A Tensor of the same type as "x". \n
|
|
|
|
* Same dimension sizes as "x" except the first dimension, which must be the same as the size of "indices".
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".\n
|
|
|
|
* An alias of "x". The content of "y" is undefined if there are duplicates in indices.
|
|
|
|
*/
|
|
|
|
REG_OP(InplaceSub)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.INPUT(indices, TensorType({DT_INT32}))
|
|
|
|
.INPUT(v, TensorType::BasicType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.OP_END_FACTORY_REG(InplaceSub)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Subtracts "v" into specified rows of "x". \n
|
|
|
|
*Computes y = x; y[i, :] -= v.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
**Two inputs, including:
|
|
|
|
* @li x: A Tensor. TensorType::NumberType().
|
|
|
|
* @li v: A Tensor of the same type as "x". \n
|
|
|
|
* Same dimension sizes as "x" except the first dimension, which must be the same as the size of "indices".
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*indices: A required list of ints. Indices into the left-most dimension of "x".
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A Tensor. Has the same type as "x".\n
|
|
|
|
* An alias of x. The content of y is undefined if there are duplicates in indices.
|
|
|
|
*/
|
|
|
|
REG_OP(InplaceSubD)
|
|
|
|
.INPUT(x, TensorType::BasicType())
|
|
|
|
.INPUT(v, TensorType::BasicType())
|
|
|
|
.OUTPUT(y, TensorType::BasicType())
|
|
|
|
.REQUIRED_ATTR(indices, ListInt)
|
|
|
|
.OP_END_FACTORY_REG(InplaceSubD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Applies sparse addition to input "x" using individual values or slices\n
|
|
|
|
* from "updates" according to "indices". The updates are non-aliasing: "x" is\n
|
|
|
|
* only modified in-place if no other operations will use it. Otherwise, a copy\n
|
|
|
|
* of "x" is made. This operation has a gradient with respect to both "x" and
|
|
|
|
* "updates".
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* Three inputs, including:
|
|
|
|
* @li x: A Tensor of type NumberType. A batch_size x classes tensor.
|
|
|
|
* @li indices: A Tensor of type IndexNumberType. Specifies the indices into "x".
|
|
|
|
* @li updates: A Tensor. Must have the same type as "x".
|
|
|
|
* Specifies the updated values to add to "x".
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* y: A Tensor with the same shape as "x", containing values of "x" updated with
|
|
|
|
* "updates".
|
|
|
|
|
|
|
|
* @see ScatterNd(),ScatterNdAdd()
|
|
|
|
*/
|
|
|
|
REG_OP(ScatterNonAliasingAdd)
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
|
|
.INPUT(updates, TensorType::NumberType())
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
.OP_END_FACTORY_REG(ScatterNonAliasingAdd)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Computes the minimum along segments of a tensor.
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* Three inputs, including:
|
|
|
|
* @li x: A Tensor of type RealNumberType.
|
|
|
|
* @li segment_ids: A 1D Tensor of type IndexNumberType, whose shape is a prefix
|
|
|
|
* of "x.shape".
|
|
|
|
* @li k: A Tensor.
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* y: A Tensor of type RealNumberType.
|
|
|
|
|
|
|
|
* @see UnsortedSegmentSum(), UnsortedSegmentProd(),
|
|
|
|
*/
|
|
|
|
REG_OP(UnsortedSegmentMin)
|
|
|
|
.INPUT(x, TensorType::RealNumberType())
|
|
|
|
.INPUT(segment_ids, TensorType::IndexNumberType())
|
|
|
|
.INPUT(num_segments, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::RealNumberType())
|
|
|
|
.OP_END_FACTORY_REG(UnsortedSegmentMin)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Computes the minimum along segments of a tensor.
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* Three inputs, including:
|
|
|
|
* @li x: A Tensor of type RealNumberType.
|
|
|
|
* @li segment_ids: A 1D Tensor of type IndexNumberType, whose shape is a prefix
|
|
|
|
* of "x.shape".
|
|
|
|
* @li k: A Tensor.
|
|
|
|
|
|
|
|
* @par Attributes:
|
|
|
|
* num_segments: An int32, specifying the number of distinct segment IDs.
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* y: A Tensor of type RealNumberType.
|
|
|
|
|
|
|
|
* @see UnsortedSegmentProdD(),
|
|
|
|
*/
|
|
|
|
REG_OP(UnsortedSegmentMinD)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
|
|
|
|
.INPUT(segment_ids, TensorType({DT_INT32}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
|
|
|
|
.REQUIRED_ATTR(num_segments, Int)
|
|
|
|
.OP_END_FACTORY_REG(UnsortedSegmentMinD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Computes the product along segments of a tensor.
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* Three inputs, including:
|
|
|
|
* @li x: A Tensor of type RealNumberType.
|
|
|
|
* @li segment_ids: A 1D Tensor of type IndexNumberType, whose shape is a prefix
|
|
|
|
* of "x.shape".
|
|
|
|
* @li k: A Tensor.
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* y: A Tensor of type RealNumberType.
|
|
|
|
|
|
|
|
* @see UnsortedSegmentSum(), UnsortedSegmentMin(),
|
|
|
|
*/
|
|
|
|
REG_OP(UnsortedSegmentProd)
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
.INPUT(segment_ids, TensorType::IndexNumberType())
|
|
|
|
.INPUT(num_segments, TensorType::IndexNumberType())
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
.OP_END_FACTORY_REG(UnsortedSegmentProd)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Computes the product along segments of a tensor.
|
|
|
|
|
|
|
|
* @par Inputs:
|
|
|
|
* Three inputs, including:
|
|
|
|
* @li x: A Tensor of type RealNumberType.
|
|
|
|
* @li segment_ids: A 1D Tensor of type IndexNumberType, whose shape is a prefix
|
|
|
|
* of "x.shape".
|
|
|
|
* @li k: A Tensor.
|
|
|
|
|
|
|
|
* @par Attributes:
|
|
|
|
* num_segments: An int32, specifying the number of distinct segment IDs.
|
|
|
|
|
|
|
|
* @par Outputs:
|
|
|
|
* y: A Tensor of type RealNumberType.
|
|
|
|
|
|
|
|
* @see UnsortedSegmentMinD()
|
|
|
|
*/
|
|
|
|
REG_OP(UnsortedSegmentProdD)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
|
|
|
|
.INPUT(segment_ids, TensorType({DT_INT32}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
|
|
|
|
.REQUIRED_ATTR(num_segments, Int)
|
|
|
|
.OP_END_FACTORY_REG(UnsortedSegmentProdD)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Crops the input.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*Inputs include: \n
|
|
|
|
* @li x: A required Tensor. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32,int64, uint64.
|
|
|
|
* @li size: A required Tensor. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64.
|
|
|
|
*@par Attributes:
|
|
|
|
*@li axis: A required int32, specifying the first dimension to crop.
|
|
|
|
*@li offset: A required array, specifying the shift for all/each dimension to align the cropped bottom with the reference bottom. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64.
|
|
|
|
*@par Outputs:
|
|
|
|
*y: A required Tensor. Has the same type and shape as "size".
|
|
|
|
|
|
|
|
*@attention Constraints:\n
|
|
|
|
*@li "y" must have the same type and shape as "size". "x" must have the same type as "size".
|
|
|
|
*@li "axis" must be less than the rank of "x".
|
|
|
|
*@li The "offset" for each dimension must not exceed the maximum value of the corresponding dimension of "x".
|
|
|
|
*@li The array length of "offset" plus the value of "axis" equals to the rank of "y".
|
|
|
|
*/
|
|
|
|
REG_OP(Crop)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_UINT32,DT_INT64,DT_UINT64}))
|
|
|
|
.INPUT(size, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_UINT32,DT_INT64,DT_UINT64}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_UINT32,DT_INT64,DT_UINT64}))
|
|
|
|
.ATTR(axis, Int, 2)
|
|
|
|
.REQUIRED_ATTR(offsets, ListInt)
|
|
|
|
.OP_END_FACTORY_REG(Crop)
|
|
|
|
} // namespace ge
|
|
|
|
#endif // GE_OP_SELECTION_OPS_H
|