You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
304 lines
10 KiB
304 lines
10 KiB
5 years ago
|
/**
|
||
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#ifndef GE_OP_REDUCE_OPS_H
|
||
|
#define GE_OP_REDUCE_OPS_H
|
||
|
|
||
|
#include "../graph/operator_reg.h"
|
||
|
|
||
|
namespace ge {
|
||
|
REG_OP(BNTrainingReduce)
|
||
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.OUTPUT(sum, TensorType({DT_FLOAT}))
|
||
|
.OUTPUT(square_sum, TensorType({DT_FLOAT}))
|
||
|
.OP_END_FACTORY_REG(BNTrainingReduce)
|
||
|
|
||
|
REG_OP(BNTrainingReduceGrad)
|
||
|
.INPUT(grads, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.INPUT(diff_scale, TensorType({DT_FLOAT}))
|
||
|
.INPUT(diff_offset, TensorType({DT_FLOAT}))
|
||
|
.INPUT(scale, TensorType({DT_FLOAT}))
|
||
|
.INPUT(batch_mean, TensorType({DT_FLOAT}))
|
||
|
.INPUT(batch_variance, TensorType({DT_FLOAT}))
|
||
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.ATTR(epsilon, Float, 0.0001)
|
||
|
.OP_END_FACTORY_REG(BNTrainingReduceGrad)
|
||
|
|
||
|
REG_OP(BNTrainingUpdate)
|
||
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.INPUT(sum, TensorType({DT_FLOAT}))
|
||
|
.INPUT(square_sum, TensorType({DT_FLOAT}))
|
||
|
.INPUT(scale, TensorType({DT_FLOAT}))
|
||
|
.INPUT(offset, TensorType({DT_FLOAT}))
|
||
|
.INPUT(mean, TensorType({DT_FLOAT}))
|
||
|
.INPUT(variance, TensorType({DT_FLOAT}))
|
||
|
.REQUIRED_ATTR(factor, Float)
|
||
|
.REQUIRED_ATTR(epsilon, Float)
|
||
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.OUTPUT(mean, TensorType({DT_FLOAT}))
|
||
|
.OUTPUT(variance, TensorType({DT_FLOAT}))
|
||
|
.OUTPUT(batch_mean, TensorType({DT_FLOAT}))
|
||
|
.OUTPUT(batch_variance, TensorType({DT_FLOAT}))
|
||
|
.OP_END_FACTORY_REG(BNTrainingUpdate)
|
||
|
|
||
|
REG_OP(BNTrainingUpdateV2)
|
||
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.INPUT(sum, TensorType({DT_FLOAT}))
|
||
|
.INPUT(square_sum, TensorType({DT_FLOAT}))
|
||
|
.INPUT(scale, TensorType({DT_FLOAT}))
|
||
|
.INPUT(offset, TensorType({DT_FLOAT}))
|
||
|
.REQUIRED_ATTR(epsilon, Float)
|
||
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.OUTPUT(batch_mean, TensorType({DT_FLOAT}))
|
||
|
.OUTPUT(batch_variance, TensorType({DT_FLOAT}))
|
||
|
.OP_END_FACTORY_REG(BNTrainingUpdateV2)
|
||
|
|
||
|
REG_OP(BNTrainingUpdateGrad)
|
||
|
.INPUT(grads, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.INPUT(batch_mean, TensorType({DT_FLOAT}))
|
||
|
.INPUT(batch_variance, TensorType({DT_FLOAT}))
|
||
|
.ATTR(epsilon, Float, 0.0001)
|
||
|
.OUTPUT(diff_scale, TensorType({DT_FLOAT}))
|
||
|
.OUTPUT(diff_offset, TensorType({DT_FLOAT}))
|
||
|
.OP_END_FACTORY_REG(BNTrainingUpdateGrad)
|
||
|
|
||
|
REG_OP(BNInferGrad)
|
||
|
.INPUT(grads, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.INPUT(scale, TensorType({DT_FLOAT}))
|
||
|
.INPUT(batch_variance, TensorType({DT_FLOAT}))
|
||
|
.OUTPUT(x_backprop, TensorType({DT_FLOAT16,DT_FLOAT}))
|
||
|
.ATTR(epsilon, Float, 0.0001)
|
||
|
.OP_END_FACTORY_REG(BNInferGrad)
|
||
|
|
||
|
REG_OP(ReduceSum)
|
||
|
.INPUT(x, TensorType::NumberType())
|
||
|
.INPUT(axis, TensorType::IndexNumberType())
|
||
|
.OUTPUT(y, TensorType::NumberType())
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceSum)
|
||
|
|
||
|
REG_OP(ReduceSumD)
|
||
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8, DT_INT32}))
|
||
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8, DT_INT32}))
|
||
|
.REQUIRED_ATTR(axis, ListInt)
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceSumD)
|
||
|
|
||
|
/**
|
||
|
*@brief Calculates the "logical sum" of elements of a tensor in a dimension.
|
||
|
|
||
|
*@par Inputs:
|
||
|
*One input:
|
||
|
*x: A mutable Tensor. Must be one of the following types: float16,
|
||
|
* float32, double. Should be a Variable Tensor.
|
||
|
|
||
|
*@par Attributes:
|
||
|
*@li keep_dims: A bool. If true, retains reduced dimensions with length 1.
|
||
|
*@li axis: The dimensions to reduce. If None, reduces all dimensions.
|
||
|
*Must be in the range [- rank (input_sensor), rank (input_sensor)).
|
||
|
|
||
|
*@par Outputs:
|
||
|
*y: The reduced tensor.
|
||
|
*/
|
||
|
REG_OP(ReduceAllD)
|
||
|
.INPUT(x, TensorType({DT_BOOL}))
|
||
|
.OUTPUT(y, TensorType({DT_BOOL}))
|
||
|
.REQUIRED_ATTR(axis, ListInt)
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceAllD)
|
||
|
|
||
|
/**
|
||
|
*@brief Calculates the "logical sum" of elements of a tensor in a dimension.
|
||
|
|
||
|
*@par Inputs:
|
||
|
*Two inputs, including:
|
||
|
*@li x: A mutable Tensor. Must be one of the following types: float16, float32, double. Should be a Variable Tensor.
|
||
|
*@li axis: A mutable Tensor. The dimensions to reduce. If None, reduces all dimensions. Must be in the range [- rank (input_sensor), rank (input_sensor)).
|
||
|
|
||
|
*@par Attributes:
|
||
|
*keep_dims: A bool. If true, retains reduced dimensions with length 1.
|
||
|
|
||
|
*@par Outputs:
|
||
|
*y: The reduced tensor.
|
||
|
*/
|
||
|
REG_OP(ReduceAll)
|
||
|
.INPUT(x, TensorType({DT_BOOL}))
|
||
|
.INPUT(axis, TensorType::IndexNumberType())
|
||
|
.OUTPUT(y, TensorType({DT_BOOL}))
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceAll)
|
||
|
|
||
|
REG_OP(ReduceProd)
|
||
|
.INPUT(x,TensorType::NumberType())
|
||
|
.INPUT(axis, TensorType::IndexNumberType())
|
||
|
.OUTPUT(y,TensorType::NumberType())
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceProd)
|
||
|
|
||
|
REG_OP(ReduceProdD)
|
||
|
.INPUT(x,TensorType({DT_FLOAT, DT_UINT8, DT_INT8, DT_INT32, DT_FLOAT16}))
|
||
|
.OUTPUT(y,TensorType({DT_FLOAT, DT_UINT8, DT_INT8, DT_INT32, DT_FLOAT16}))
|
||
|
.REQUIRED_ATTR(axis, ListInt)
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceProdD)
|
||
|
|
||
|
/**
|
||
|
*@brief Reduces "x" along the dimensions according to "axis".
|
||
|
|
||
|
*@par Inputs:
|
||
|
*Two inputs, including:
|
||
|
* @li x: A Tensor. Must be one of the following types: float16, float32, int8, uint8.
|
||
|
* @li axis: The dimensions to reduce. Must be one of the following types: int, list, tuple, NoneType.\n
|
||
|
* - If None (the default), reduces all dimensions.\n
|
||
|
* - Must be in the range [-rank(x), rank(x)).
|
||
|
|
||
|
*@par Attributes:
|
||
|
*keep_dims: A bool or NoneType. \n
|
||
|
* - If true, retains reduced dimensions with length 1. \n
|
||
|
* - If false, the rank of the tensor is reduced by 1 for each entry in axis.
|
||
|
*@par Outputs:
|
||
|
*y: A Tensor. Has the same type as "x".
|
||
|
*/
|
||
|
REG_OP(ReduceMean)
|
||
|
.INPUT(x, TensorType::NumberType())
|
||
|
.INPUT(axis, TensorType::IndexNumberType())
|
||
|
.OUTPUT(y, TensorType::NumberType())
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceMean)
|
||
|
|
||
|
/**
|
||
|
*@brief Reduces "x" along the dimensions according to "axis".
|
||
|
|
||
|
*@par Inputs:
|
||
|
*One input:
|
||
|
* @li x: A Tensor. Must be one of the following types: float16, float32, int8, uint8.
|
||
|
|
||
|
*@par Attributes:
|
||
|
*@li axis: The dimensions to reduce. Must be one of the following types: int, list, tuple, NoneType. \n
|
||
|
* If None (the default), reduces all dimensions. \n
|
||
|
* Must be in the range [-rank(x), rank(x)). \n
|
||
|
*@li keep_dims: A bool or NoneType. \n
|
||
|
* - If true, retains reduced dimensions with length 1. \n
|
||
|
* - If false, the rank of the tensor is reduced by 1 for each entry in axis.
|
||
|
*@par Outputs:
|
||
|
*y: A Tensor. Has the same type as "x".
|
||
|
*/
|
||
|
REG_OP(ReduceMeanD)
|
||
|
.INPUT(x, TensorType({DT_FLOAT16, DT_INT32, DT_FLOAT, DT_INT8, DT_UINT8}))
|
||
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_INT32, DT_FLOAT, DT_INT8, DT_UINT8}))
|
||
|
.REQUIRED_ATTR(axis, ListInt)
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceMeanD)
|
||
|
|
||
|
REG_OP(ReduceMax)
|
||
|
.INPUT(x, TensorType::NumberType())
|
||
|
.INPUT(axis, TensorType::IndexNumberType())
|
||
|
.OUTPUT(y, TensorType::NumberType())
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceMax)
|
||
|
|
||
|
REG_OP(ReduceMaxD)
|
||
|
.INPUT(x, TensorType({DT_FLOAT, DT_UINT8, DT_INT8,
|
||
|
DT_FLOAT16, DT_INT32}))
|
||
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_UINT8, DT_INT8,
|
||
|
DT_FLOAT16, DT_INT32}))
|
||
|
.REQUIRED_ATTR(axis, ListInt)
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceMaxD)
|
||
|
|
||
|
REG_OP(ReduceMin)
|
||
|
.INPUT(x, TensorType::NumberType())
|
||
|
.INPUT(axis, TensorType::IndexNumberType())
|
||
|
.OUTPUT(y, TensorType::NumberType())
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceMin)
|
||
|
|
||
|
REG_OP(ReduceMinD)
|
||
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8}))
|
||
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8}))
|
||
|
.REQUIRED_ATTR(axis, ListInt)
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceMinD)
|
||
|
/**
|
||
|
*@brief Computes the "logical or" of elements across dimensions of a tensor.\n
|
||
|
* Reduces `x` along the dimensions given in `axis`.
|
||
|
* Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
|
||
|
* entry in `axis`. If `keep_dims` is true, the reduced dimensions
|
||
|
* are retained with length 1.
|
||
|
*
|
||
|
* If `axis` is None, all dimensions are reduced, and a
|
||
|
* tensor with a single element is returned.
|
||
|
*
|
||
|
*@attention Constraints:\n
|
||
|
* Only support bool
|
||
|
*
|
||
|
*@par Inputs:
|
||
|
*@li x : The boolean tensor to reduce.
|
||
|
*@li axis : The dimensions to reduce. If `None` (the default), reduces all
|
||
|
* dimensions. Must be in the range `[-rank(x), rank(x))`.
|
||
|
*
|
||
|
*@par Attributes:
|
||
|
* keep_dims : If true, retains reduced dimensions with length 1.
|
||
|
*
|
||
|
*@par Outputs:
|
||
|
* y : The reduced tensor
|
||
|
*
|
||
|
*/
|
||
|
REG_OP(ReduceAny)
|
||
|
.INPUT(x, TensorType({DT_BOOL}))
|
||
|
.INPUT(axis, TensorType::IndexNumberType())
|
||
|
.OUTPUT(y, TensorType({DT_BOOL}))
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceAny)
|
||
|
/**
|
||
|
*@brief Computes the "logical or" of elements across dimensions of a tensor.\n
|
||
|
* Reduces `x` along the dimensions given in `axis`.
|
||
|
* Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
|
||
|
* entry in `axis`. If `keep_dims` is true, the reduced dimensions
|
||
|
* are retained with length 1.
|
||
|
*
|
||
|
* If `axis` is None, all dimensions are reduced, and a
|
||
|
* tensor with a single element is returned.
|
||
|
*
|
||
|
*@attention Constraints:\n
|
||
|
* Only support bool
|
||
|
*
|
||
|
*@par Inputs:
|
||
|
* x : The boolean tensor to reduce.
|
||
|
*
|
||
|
*@par Attributes:
|
||
|
*@li axis : The dimensions to reduce. If `None` (the default), reduces all
|
||
|
* dimensions. Must be in the range `[-rank(x), rank(x))`.
|
||
|
*@li keep_dims : If true, retains reduced dimensions with length 1.
|
||
|
*
|
||
|
*@par Outputs:
|
||
|
* y : The reduced tensor
|
||
|
*
|
||
|
*/
|
||
|
REG_OP(ReduceAnyD)
|
||
|
.INPUT(x, TensorType({DT_BOOL}))
|
||
|
.OUTPUT(y, TensorType({DT_BOOL}))
|
||
|
.REQUIRED_ATTR(axis, ListInt)
|
||
|
.ATTR(keep_dims, Bool, false)
|
||
|
.OP_END_FACTORY_REG(ReduceAnyD)
|
||
|
|
||
|
} //namespace ge
|
||
|
|
||
|
|
||
|
#endif /* GE_OP_REDUCE_OPS_H */
|