You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/third_party/fwkacllib/inc/ops/transformation_ops.h

288 lines
10 KiB

5 years ago
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GE_OP_TRANSFORMATION_OPS_H
#define GE_OP_TRANSFORMATION_OPS_H
#include "../graph/operator_reg.h"
namespace ge {
REG_OP(DepthwiseWeight4DTo6D)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT16}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT16}))
.OP_END_FACTORY_REG(DepthwiseWeight4DTo6D)
REG_OP(DepthwiseWeight6DTo4D)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT16}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT16}))
.ATTR(channel_size, Int, 16)
.OP_END_FACTORY_REG(DepthwiseWeight6DTo4D)
/**
*@brief Permutes the dimensions according to perm.\n
The returned tensor's dimension i will correspond to the input dimension perm[i].
*@par Inputs:
*x: A Tensor. Must be one of the following types: float16, float32, int8, int16, int32, int64, uint8, uint16, uint32, uint64.
*@par Attributes:
*perm: A permutation of the dimensions of "x".
*@par Outputs:
*y: A Tensor. Has the same type as "x".
*/
REG_OP(TransposeD)
.INPUT(x, TensorType::BasicType())
.OUTPUT(y, TensorType::BasicType())
.ATTR(perm, ListInt, {})
.OP_END_FACTORY_REG(TransposeD)
/**
*@brief Permutes the dimensions according to perm.\n
The returned tensor's dimension i will correspond to the input dimension perm[i].
*@par Inputs:
*@li x: A Tensor. Must be one of the following types: float16, float32, int8, int16, int32, int64, uint8, uint16, uint32, uint64.
*@li perm: A Tensor of type int32 or int64. A permutation of the dimensions of "x".
*@par Outputs:
*y: A Tensor. Has the same type as "x".
*/
REG_OP(Transpose)
.INPUT(x, TensorType::BasicType())
.INPUT(perm, TensorType::IndexNumberType())
.OUTPUT(y, TensorType::BasicType())
.OP_END_FACTORY_REG(Transpose)
REG_OP(Flatten)
.INPUT(x, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64,
DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64,
DT_FLOAT, DT_FLOAT16}))
.OUTPUT(y, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64,
DT_UINT8, DT_UINT16, DT_UINT32, DT_UINT64,
DT_FLOAT, DT_FLOAT16}))
.OP_END_FACTORY_REG(Flatten)
REG_OP(BatchToSpaceND)
.INPUT(x, TensorType::BasicType())
.INPUT(block_shape, TensorType::IndexNumberType())
.INPUT(crops, TensorType::IndexNumberType())
.OUTPUT(y, TensorType::BasicType())
.OP_END_FACTORY_REG(BatchToSpaceND)
REG_OP(BatchToSpaceNDD)
.INPUT(x, TensorType::BasicType())
.OUTPUT(y, TensorType::BasicType())
.REQUIRED_ATTR(block_shape, ListInt)
.REQUIRED_ATTR(crops, ListInt)
.OP_END_FACTORY_REG(BatchToSpaceNDD)
REG_OP(SpaceToBatchND)
.INPUT(x, TensorType::BasicType())
.INPUT(block_shape, TensorType::IndexNumberType())
.INPUT(paddings, TensorType::IndexNumberType())
.OUTPUT(y, TensorType::BasicType())
.OP_END_FACTORY_REG(SpaceToBatchND)
REG_OP(SpaceToBatchNDD)
.INPUT(x, TensorType::BasicType())
.OUTPUT(y, TensorType::BasicType())
.REQUIRED_ATTR(block_shape, ListInt)
.REQUIRED_ATTR(paddings, ListInt)
.OP_END_FACTORY_REG(SpaceToBatchNDD)
REG_OP(SpaceToDepth)
.INPUT(x, TensorType::BasicType())
.OUTPUT(y, TensorType::BasicType())
.REQUIRED_ATTR(block_size, Int)
.ATTR(data_format, String, "NHWC")
.OP_END_FACTORY_REG(SpaceToDepth)
REG_OP(DepthToSpace)
.INPUT(x, TensorType::BasicType())
.OUTPUT(y, TensorType::BasicType())
.REQUIRED_ATTR(block_size, Int)
.ATTR(data_format, String, "NHWC")
.OP_END_FACTORY_REG(DepthToSpace)
/**
*@brief Permutes data into spatial data blocks and then prunes them.
*@par Inputs:
*x: A 4D Tensor with format NC1HWC0. \n
*Must be one of the following types: float16, float32
*@par Attributes:
*@li crops: A required list of int8, int16, int32, or int64. No default value.
*@li block_size: A required int8, int16, int32, or int64. No default value.
*@par Outputs:
*y: A 4D Tensor with format NC1HWC0, \n
* of type float16 or float32.
*@attention Constraints:
*@li The size of the first dimension of input "x" must be divisible by (block_size * block_size).
*@li "crops" is a 2D tensor of non-negative integers with shape (2, 2).
*@li block_size >= 2
*/
REG_OP(BatchToSpace)
.INPUT(x, TensorType::BasicType())
.INPUT(crops, TensorType::IndexNumberType())
.OUTPUT(y, TensorType::BasicType())
.REQUIRED_ATTR(block_size, Int)
.OP_END_FACTORY_REG(BatchToSpace)
/**
*@brief Rearrange the batch (permutes) data into spatial data blocks, and then crop them.
*@par Inputs:
* One input:
*x: An Tensor of shape [batch*block_size*block_size, height_pad/block_size, width_pad/block_size, depth].\n
*The batch size of the input tensor must be divisible by (block size * block size).
*@par Attributes:
*@li block_size: Must be one of the following types: `int32`, `int64`.
*@li crops: An Tensor. Must be one of the following types: int32, Int64.\n
*2D tensor with non negative integer of shape [2, 2]. It specifies how many\n
*elements are clipped from the intermediate result of spatial dimension.
*@par Outputs:
*y: A Tensor. Has the same type and format as input "x".
*@attention Constraints:
*@li The size of the first dimension of input "x" must be divisible by (block_size * block_size).
*@li "crops" is a 2D tensor of non-negative integers with shape (2, 2).
*@li block_size >= 2
*/
REG_OP(BatchToSpaceD)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT64, DT_INT32, DT_UINT8,
DT_UINT16, DT_UINT32, DT_UINT64, DT_INT8, DT_INT16, DT_COMPLEX64,
DT_COMPLEX128, DT_QINT8, DT_QUINT8, DT_QINT16, DT_QUINT16, DT_QINT32}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT64, DT_INT32, DT_UINT8,
DT_UINT16, DT_UINT32, DT_UINT64, DT_INT8, DT_INT16, DT_COMPLEX64,
DT_COMPLEX128, DT_QINT8, DT_QUINT8, DT_QINT16, DT_QUINT16, DT_QINT32}))
.REQUIRED_ATTR(block_size, Int)
.REQUIRED_ATTR(crops, ListInt)
.OP_END_FACTORY_REG(BatchToSpaceD)
REG_OP(SpaceToBatch)
.INPUT(x, TensorType::BasicType())
.INPUT(paddings, TensorType::IndexNumberType())
.OUTPUT(y, TensorType::BasicType())
.REQUIRED_ATTR(block_size, Int)
.OP_END_FACTORY_REG(SpaceToBatch)
REG_OP(SpaceToBatchD)
.INPUT(x, TensorType::BasicType())
.OUTPUT(y, TensorType::BasicType())
.REQUIRED_ATTR(block_size, Int)
.REQUIRED_ATTR(paddings, ListInt)
.OP_END_FACTORY_REG(SpaceToBatchD)
/**
* @brief Unpacks the given dimension of a rank-R tensor "value" into rank-(R-1)
* tensors.
* @par Inputs:
* @ value: A rank-R tensor (R > 0) of type BasicType, with format ND or NC1HWC0.
* @par Attributes:
* @li num: An optional int, specifying the number of tensors to be unpacked to.
* Defaults to "None".
* @li axis: A required int, specifying the axis to unpack along. The value range
* is [-R, R).
* @par Outputs:
* output: The list of Tensor objects unpacked from "value", of type BasicType.
* @attention Constraints:
* @li If "num" is not specified, it is inferred from the shape of "value".
* @li For the ND format, "axis" is in the range [-R, R); For the NC1HWC0 format,
* "axis" must not be 2, 3, -2, or -3.
*/
REG_OP(Unpack)
.INPUT(value, TensorType::BasicType())
.DYNAMIC_OUTPUT(output, TensorType::BasicType())
.REQUIRED_ATTR(num, Int)
.ATTR(axis, Int, 0)
.OP_END_FACTORY_REG(Unpack)
/**
* @brief Extract "patches" from "images" and stacks them in the "depth"
* dimension of the output.
* @par Inputs:
* images: A 4D Tensor with shape [batch, in_rows, in_cols, depth].
* @par Attributes:
* @li ksizes: The size of the sliding window for each dimension of images.
* @li strides: How far the centers of two consecutive patches are in the images.\n
* Must be: [1, stride_rows, stride_cols, 1].
* @li rates: Must be: [1, rate_rows, rate_cols, 1]. This is the input stride,\n
* specifying how far two consecutive patch samples are in the input. Equivalent\n
* to extracting patches with patch_sizes_eff = patch_sizes + (patch_sizes - 1) *\n
* (rates - 1), followed by subsampling them spatially by a factor of rates. This\n
* is equivalent to rate in dilated (a.k.a. Atrous) convolutions.
* @li padding: The type of padding algorithm to use.
* @par Outputs:
* Output: A 4D Tensor with shape [batch, out_rows, out_cols, ksize_rows *\n
* ksize_cols * depth] containing image patches with size ksize_rows x ksize_cols\n
* x depth vectorized in the "depth" dimension. Note "out_rows" and "out_cols"\n
* are the dimensions of the output patches.
* @attention Constraints:
* "ksizes", "strides" and "rates" are lists of integers.
*/
REG_OP(ExtractImagePatches)
.INPUT(images, TensorType::REALNUMBERTYPE())
.OUTPUT(y, TensorType::REALNUMBERTYPE())
.ATTR(ksizes, ListInt, {1,3,3,1})
.ATTR(strides, ListInt, {1,1,1,1})
.ATTR(rates, ListInt, {1,1,1,1})
.ATTR(padding, String, "SAME")
.OP_END_FACTORY_REG(ExtractImagePatches)
REG_OP(ConfusionTransposeD)
.INPUT(x, TensorType::BasicType())
.OUTPUT(y, TensorType::BasicType())
.REQUIRED_ATTR(perm, ListInt)
.REQUIRED_ATTR(shape, ListInt)
.REQUIRED_ATTR(transpose_first, Bool)
.OP_END_FACTORY_REG(ConfusionTransposeD)
REG_OP(ConfusionTranspose)
.INPUT(x, TensorType::BasicType())
.INPUT(shape, TensorType::IndexNumberType())
.OUTPUT(y, TensorType::BasicType())
.REQUIRED_ATTR(perm, ListInt)
.REQUIRED_ATTR(transpose_first, Bool)
.OP_END_FACTORY_REG(ConfusionTranspose)
REG_OP(FlattenV2)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
DT_INT32, DT_UINT32, DT_INT64, DT_UINT64}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16,
DT_INT32, DT_UINT32, DT_INT64, DT_UINT64}))
.ATTR(axis, Int, 1)
.ATTR(end_axis, Int, -1)
.OP_END_FACTORY_REG(FlattenV2)
} // namespace ge
#endif // GE_OP_TRANSFORMATION_OPS_H