You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/third_party/fwkacllib/inc/ops/batch_ops.h

162 lines
5.9 KiB

5 years ago
/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*!
* \file batch_ops.h
* \brief
*/
5 years ago
#ifndef GE_OP_BATCH_OPS_H_
#define GE_OP_BATCH_OPS_H_
#include "graph/operator_reg.h"
namespace ge {
/**
*@brief Creates batches of tensors in "x_tensors" . \n
*@par Inputs:
*Input "x_tensors" is a list or a dictionary of tensors.
*x_tensors: The list or dictionary of tensors to enqueue .
It's a dynamic input \n
*@par Attributes:
*@li num_batch_threads: The number of threads enqueuing "x_tensors".
The batching will be nondeterministic if "num_batch_threads" > 1.
*@li max_batch_size: The maximum batch size pulled from the queue.
*@li max_enqueued_batches: The maximum number of batches pulled from the queue.
*@li batch_timeout_micros: The batch processing timeout, in microseconds.
*@li allowed_batch_sizes: The allowed batch size pulled from the queue.
*@li grad_timeout_micros: The gradient batch processing timeout,
in microseconds.
*@li container: If non-empty, this queue is placed in the given container.
Otherwise, a default container is used.
*@li shared_name: If set, this queue will be shared under the given name
across multiple sessions.
*@li batching_queue: The queue resource container . \n
*@par Outputs:
*@li y_index: A Tensor. The index of a BatchTensor. Must be in row-major order.
*@li y_id: A Tensor. The ID of a BatchTensor. Must be in row-major order.
*@li y_tensors: A list or dictionary of tensors with
the same types as "x_tensors" . It's a dynamic output. \n
5 years ago
*@attention Constraints:
*Batch runs on the Ascend AI CPU, which delivers poor performance. \n
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator Batch.
5 years ago
*/
REG_OP(Batch)
.DYNAMIC_INPUT(x_tensors, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, \
DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_BOOL, DT_DOUBLE}))
.OUTPUT(y_index, TensorType({ DT_INT64 }))
.OUTPUT(y_id, TensorType({ DT_INT64 }))
.DYNAMIC_OUTPUT(y_tensors, TensorType({DT_INT8, DT_UINT8, DT_INT16, \
DT_UINT16, DT_INT32, DT_INT64, DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_BOOL}))
.REQUIRED_ATTR(num_batch_threads, Int)
.REQUIRED_ATTR(max_batch_size, Int)
.ATTR(max_enqueued_batches, Int, 10)
.REQUIRED_ATTR(batch_timeout_micros, Int)
.ATTR(allowed_batch_sizes, ListInt, {})
.REQUIRED_ATTR(grad_timeout_micros, Int)
.ATTR(container, String, "")
.ATTR(shared_name, String, "")
.ATTR(batching_queue, String, "")
.OP_END_FACTORY_REG(Batch)
/**
*@brief Reverses the operation of Batch for a single output Tensor . \n
5 years ago
*@par Inputs:
*Input "x_tensors" is a list or a dictionary of tensors.
* @li x_tensors: The list or dictionary of tensors to enqueue.
* @li index: The matching "batch_index" obtained from Batch.
* @li id: The "id" scalar emitted by Batch . \n
5 years ago
*@par Attributes:
*@li timeout_micros: The unbatch processing timeout, in microseconds.
*@li container: If non-empty, this queue is placed in the given container.
Otherwise, a default container is used.
*@li shared_name: If set, this queue will be shared under the given name
across multiple sessions . \n
5 years ago
*@par Outputs:
*y_tensor: A list or dictionary of tensors with the same types as "x_tensors" . \n
5 years ago
*@attention Constraints:
*Unbatch runs on the Ascend AI CPU, which delivers poor performance. \n
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator Unbatch.
5 years ago
*/
REG_OP(Unbatch)
.INPUT(x_tensor, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE}))
.INPUT(index, TensorType({DT_INT64}))
.INPUT(id, TensorType({DT_INT64}))
.OUTPUT(y_tensor, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE}))
.REQUIRED_ATTR(timeout_micros, Int)
.ATTR(container, String, "")
.ATTR(shared_name, String, "")
.OP_END_FACTORY_REG(Unbatch)
/**
*@brief Acts like Batch but using the given "batch_index" index of batching
things as they become available . \n
5 years ago
*@par Inputs:
*Input "x_input" is a list or a dictionary of tensors.
* @li x_input: The input to the Unbatch operation.
* @li index: The batch_index given to the Unbatch operation.
* @li id: The "id" scalar emitted by Batch.
* @li grad: The downstream gradient . \n
5 years ago
*@par Attributes:
*@li container: If non-empty, this queue is placed in the given container.
Otherwise, a default container is used.
*@li shared_name: If set, this queue will be shared under the given name
across multiple sessions . \n
5 years ago
*@par Outputs:
*y_grad: The return value, either an empty tensor or the batched gradient . \n
5 years ago
*@attention Constraints:
*UnbatchGrad runs on the Ascend AI CPU, which delivers poor performance. \n
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator UnbatchGrad.
5 years ago
*/
REG_OP(UnbatchGrad)
.INPUT(x_input, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE}))
.INPUT(index, TensorType({DT_INT64}))
.INPUT(grad, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE}))
.INPUT(id, TensorType({DT_INT64}))
.OUTPUT(y_grad, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE}))
.ATTR(container, String, "")
.ATTR(shared_name, String, "")
.OP_END_FACTORY_REG(UnbatchGrad)
} // namespace ge
#endif // GE_OP_BATCH_OPS_H_