|
|
|
/**
|
|
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \file stateful_random_ops.h
|
|
|
|
* \brief
|
|
|
|
*/
|
|
|
|
#ifndef OPS_BUILT_IN_OP_PROTO_INC_STATEFUL_RANDOM_OPS_H_
|
|
|
|
#define OPS_BUILT_IN_OP_PROTO_INC_STATEFUL_RANDOM_OPS_H_
|
|
|
|
|
|
|
|
#include "graph/operator.h"
|
|
|
|
#include "graph/operator_reg.h"
|
|
|
|
|
|
|
|
namespace ge {
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Non-deterministically generates some integers . \n
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*This op may use some OS-provided source of non-determinism (e.g. an RNG),
|
|
|
|
*so each execution will give different results. Inputs included:
|
|
|
|
*@li shape: The shape of the output tensor . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y:A Returns Non-deterministic integer values with specified shape . \n
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
*Compatible with tensorflow NonDeterministicInts operator.
|
|
|
|
*/
|
|
|
|
|
|
|
|
REG_OP(NonDeterministicInts)
|
|
|
|
.INPUT(shape, TensorType({DT_INT32,DT_INT64}))
|
|
|
|
.OUTPUT(y, TensorType({DT_INT32,DT_INT64}))
|
|
|
|
.REQUIRED_ATTR(dtype, Type)
|
|
|
|
.OP_END_FACTORY_REG(NonDeterministicInts)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Advance the counter of a counter-based RNG. The state of the RNG after
|
|
|
|
*`rng_skip(n)` will be the same as that after `stateful_uniform([n])`
|
|
|
|
*(or any other distribution). The actual increment added to the
|
|
|
|
*counter is an unspecified implementation detail . \n
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*@li resource: The handle of the resource variable that stores the state of the RNG.
|
|
|
|
*@li algorithm: The RNG algorithm.
|
|
|
|
*@li delta: The amount of advancement . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y:A Returns the created operation . \n
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
* Compatible with tensorflow RngSkip operator.
|
|
|
|
*/
|
|
|
|
|
|
|
|
REG_OP(RngSkip)
|
|
|
|
.INPUT(x, TensorType({DT_RESOURCE}))
|
|
|
|
.INPUT(algorithm, TensorType({DT_INT64}))
|
|
|
|
.INPUT(delta, TensorType({DT_INT64}))
|
|
|
|
.OP_END_FACTORY_REG(RngSkip)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Outputs random integers from a uniform distribution.
|
|
|
|
The generated values are uniform integers in the range `[minval, maxval)`.
|
|
|
|
The lower bound `minval` is included in the range, while the upper bound
|
|
|
|
`maxval` is excluded.
|
|
|
|
The random integers are slightly biased unless `maxval - minval` is an exact
|
|
|
|
power of two. The bias is small for values of `maxval - minval` significantly
|
|
|
|
smaller than the range of the output (either `2^32` or `2^64`) . \n
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*@li resource: The handle of the resource variable that stores the state of the RNG.
|
|
|
|
*@li algorithm: The RNG algorithm.
|
|
|
|
*@li shape: The shape of the output tensor.
|
|
|
|
*@li minval: Minimum value (inclusive, scalar).
|
|
|
|
*@li maxval: Maximum value (exclusive, scalar) . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y:A Returns Random values with specified shape . \n
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
* Compatible with tensorflow StatefulRandomBinomial operator.
|
|
|
|
*/
|
|
|
|
|
|
|
|
REG_OP(StatefulRandomBinomial)
|
|
|
|
.INPUT(x, TensorType({DT_RESOURCE}))
|
|
|
|
.INPUT(algorithm, TensorType({DT_INT64}))
|
|
|
|
.INPUT(shape, TensorType({DT_INT32}))
|
|
|
|
.INPUT(counts, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
|
|
|
|
.INPUT(probs, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
|
|
|
|
.REQUIRED_ATTR(dtype, Type)
|
|
|
|
.OP_END_FACTORY_REG(StatefulRandomBinomial)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Outputs random values from a normal distribution.
|
|
|
|
*The generated values will have mean 0 and standard deviation 1 . \n
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*@li resource: The handle of the resource variable that stores the state of the RNG.
|
|
|
|
*@li algorithm: The RNG algorithm.
|
|
|
|
*@li shape: The shape of the output tensor . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y:A Returns A tensor of the specified shape filled with random normal values . \n
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
* Compatible with tensorflow StatefulStandardNormalV2 operator.
|
|
|
|
*/
|
|
|
|
|
|
|
|
REG_OP(StatefulStandardNormalV2)
|
|
|
|
.INPUT(x, TensorType({DT_RESOURCE}))
|
|
|
|
.INPUT(algorithm, TensorType({DT_INT64}))
|
|
|
|
.INPUT(shape, TensorType({DT_INT32,DT_INT64}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT}))
|
|
|
|
.OP_END_FACTORY_REG(StatefulStandardNormalV2)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Outputs random values from a truncated normal distribution.
|
|
|
|
*The generated values follow a normal distribution with mean 0 and standard
|
|
|
|
*deviation 1, except that values whose magnitude is more than 2 standard
|
|
|
|
*deviations from the mean are dropped and re-picked . \n
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*@li resource: The handle of the resource variable that stores the state of the RNG.
|
|
|
|
*@li algorithm: The RNG algorithm.
|
|
|
|
*@li shape: The shape of the output tensor . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y:A Returns Random values with specified shape . \n
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
* Compatible with tensorflow StatefulTruncatedNormal operator.
|
|
|
|
*/
|
|
|
|
|
|
|
|
REG_OP(StatefulTruncatedNormal)
|
|
|
|
.INPUT(x, TensorType({DT_RESOURCE}))
|
|
|
|
.INPUT(algorithm, TensorType({DT_INT64}))
|
|
|
|
.INPUT(shape, TensorType({DT_INT32,DT_INT64}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT}))
|
|
|
|
.OP_END_FACTORY_REG(StatefulTruncatedNormal)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Outputs random values from a uniform distribution.
|
|
|
|
The generated values follow a uniform distribution in the range `[0, 1)`. The
|
|
|
|
lower bound 0 is included in the range, while the upper bound 1 is excluded.
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*@li resource: The handle of the resource variable that stores the state of the RNG.
|
|
|
|
*@li algorithm: The RNG algorithm.
|
|
|
|
*@li shape: The shape of the output tensor . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y:A Returns Random values with specified shape . \n
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
* Compatible with tensorflow StatefulUniform operator.
|
|
|
|
*/
|
|
|
|
|
|
|
|
REG_OP(StatefulUniform)
|
|
|
|
.INPUT(x, TensorType({DT_RESOURCE}))
|
|
|
|
.INPUT(algorithm, TensorType({DT_INT64}))
|
|
|
|
.INPUT(shape, TensorType({DT_INT32,DT_INT64}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT}))
|
|
|
|
.OP_END_FACTORY_REG(StatefulUniform)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Outputs random integers from a uniform distribution.
|
|
|
|
The generated values are uniform integers covering the whole range of `dtype` . \n
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*@li resource: The handle of the resource variable that stores the state of the RNG.
|
|
|
|
*@li algorithm: The RNG algorithm.
|
|
|
|
*@li shape: The shape of the output tensor . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y:A Returns Random values with specified shape . \n
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
* Compatible with tensorflow StatefulUniformFullInt operator.
|
|
|
|
*/
|
|
|
|
|
|
|
|
REG_OP(StatefulUniformFullInt)
|
|
|
|
.INPUT(x, TensorType({DT_RESOURCE}))
|
|
|
|
.INPUT(algorithm, TensorType({DT_INT64}))
|
|
|
|
.INPUT(shape, TensorType({DT_INT32,DT_INT64}))
|
|
|
|
.OUTPUT(y, TensorType({DT_UINT64}))
|
|
|
|
.OP_END_FACTORY_REG(StatefulUniformFullInt)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief Outputs random integers from a uniform distribution.
|
|
|
|
The generated values are uniform integers in the range `[minval, maxval)`.
|
|
|
|
The lower bound `minval` is included in the range, while the upper bound
|
|
|
|
`maxval` is excluded.
|
|
|
|
The random integers are slightly biased unless `maxval - minval` is an exact
|
|
|
|
power of two. The bias is small for values of `maxval - minval` significantly
|
|
|
|
smaller than the range of the output (either `2^32` or `2^64`) . \n
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*@li resource: The handle of the resource variable that stores the state of the RNG.
|
|
|
|
*@li algorithm: The RNG algorithm.
|
|
|
|
*@li shape: The shape of the output tensor.
|
|
|
|
*@li minval: Minimum value (inclusive, scalar).
|
|
|
|
*@li maxval: Maximum value (exclusive, scalar) . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*y:A Returns Random values with specified shape . \n
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
* Compatible with tensorflow StatefulUniformInt operator.
|
|
|
|
*/
|
|
|
|
|
|
|
|
REG_OP(StatefulUniformInt)
|
|
|
|
.INPUT(x, TensorType({DT_RESOURCE}))
|
|
|
|
.INPUT(algorithm, TensorType({DT_INT64}))
|
|
|
|
.INPUT(shape, TensorType({DT_INT32,DT_INT64}))
|
|
|
|
.INPUT(minval, TensorType({DT_INT64}))
|
|
|
|
.INPUT(maxval, TensorType({DT_INT64}))
|
|
|
|
.OUTPUT(y, TensorType({DT_INT64}))
|
|
|
|
.OP_END_FACTORY_REG(StatefulUniformInt)
|
|
|
|
|
|
|
|
} // namespace ge
|
|
|
|
|
|
|
|
#endif // OPS_BUILT_IN_OP_PROTO_INC_STATEFUL_RANDOM_OPS_H_
|