|
|
|
@ -1444,8 +1444,7 @@ REG_OP(MaxPoolV3Grad)
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*x: A tensor of shape is 4d, format is support NHWC.
|
|
|
|
|
*filter: A tensor of shape is 3d, the type is same with x,
|
|
|
|
|
and the c dimension is same with x. \n
|
|
|
|
|
*filter: A tensor of shape is 3d, the type is same with x, and the c dimension is same with x. \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li strides: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C dimensions are 1.
|
|
|
|
@ -1473,6 +1472,82 @@ REG_OP(Dilation2D)
|
|
|
|
|
.ATTR(data_format, String, "NHWC")
|
|
|
|
|
.OP_END_FACTORY_REG(Dilation2D)
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* @brief Performs Dilation2DBackpropFilter on the input. \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*x: A tensor of shape is 4d, format is support NHWC
|
|
|
|
|
*filter: A tensor of shape is 3d the type is same with x,
|
|
|
|
|
*out_backprop: Has the same type and format as input "x" and the c dimension is same with x. \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes
|
|
|
|
|
*@li stride: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C
|
|
|
|
|
dimension are 1
|
|
|
|
|
*@li rates: A required list of 4 ints, the rates of the N and C dimensions are 1
|
|
|
|
|
*@li padding_mode: A optional string. Defaults to "SAME", it support SAME and VALID
|
|
|
|
|
*@li pads: A optional list of 4 ints. \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: The output tensor. Has the same type and format as input "filter" . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator Dilation2D
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
REG_OP(Dilation2DBackpropFilter)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16}))
|
|
|
|
|
.INPUT(filter,
|
|
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16}))
|
|
|
|
|
.INPUT(out_backprop,
|
|
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16}))
|
|
|
|
|
.OUTPUT(y,
|
|
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16}))
|
|
|
|
|
.REQUIRED_ATTR(strides, ListInt)
|
|
|
|
|
.REQUIRED_ATTR(rates, ListInt)
|
|
|
|
|
.ATTR(padding_mode, String, "SAME")
|
|
|
|
|
.ATTR(pads, ListInt, {0, 0, 0, 0})
|
|
|
|
|
.ATTR(ceil_mode, Bool, false)
|
|
|
|
|
.ATTR(data_format, String, "NHWC")
|
|
|
|
|
.OP_END_FACTORY_REG(Dilation2DBackpropFilter)
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* @brief Performs Dilation2DBackpropInput on the input. \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*x: A tensor of shape is 4d, format is support NHWC
|
|
|
|
|
*filter: A tensor of shape is 3d the type is same with x,
|
|
|
|
|
*out_backprop: Has the same type and format as input "x" and the c dimension is same with x. \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes
|
|
|
|
|
*@li stride: A required list of 4 ints, specifying the stride of the sliding window. The strides of the N and C
|
|
|
|
|
dimension are 1
|
|
|
|
|
*@li rates: A required list of 4 ints, the rates of the N and C dimensions are 1
|
|
|
|
|
*@li padding_mode: A optional string. Defaults to "SAME", it support SAME and VALID
|
|
|
|
|
*@li pads: A optional list of 4 ints. \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: The output tensor. Has the same type and format as input "filter" . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator Dilation2D
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
REG_OP(Dilation2DBackpropInput)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16}))
|
|
|
|
|
.INPUT(filter,
|
|
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16}))
|
|
|
|
|
.INPUT(out_backprop,
|
|
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16}))
|
|
|
|
|
.OUTPUT(y,
|
|
|
|
|
TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64, DT_UINT8, DT_INT16, DT_INT8, DT_UINT16}))
|
|
|
|
|
.REQUIRED_ATTR(strides, ListInt)
|
|
|
|
|
.REQUIRED_ATTR(rates, ListInt)
|
|
|
|
|
.ATTR(padding_mode, String, "SAME")
|
|
|
|
|
.ATTR(pads, ListInt, {0, 0, 0, 0})
|
|
|
|
|
.ATTR(ceil_mode, Bool, false)
|
|
|
|
|
.ATTR(data_format, String, "NHWC")
|
|
|
|
|
.OP_END_FACTORY_REG(Dilation2DBackpropInput)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief Applies a 2D adaptive average pooling over
|
|
|
|
|
* an input signal composed of several input planes. \n
|
|
|
|
|