You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/graph/build/logical_stream_allocator.cc

779 lines
29 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "graph/build/logical_stream_allocator.h"
#include <queue>
#include "common/ge/ge_util.h"
#include "framework/common/debug/ge_log.h"
#include "framework/common/fmk_error_codes.h"
#include "framework/common/types.h"
#include "graph/debug/ge_attr_define.h"
#include "graph/utils/graph_utils.h"
#include "graph/common/ge_call_wrapper.h"
using std::map;
using std::set;
using std::string;
using std::vector;
using std::queue;
namespace ge {
LogicalStreamPass::LogicalStreamPass(const string &name) : name_(name) {}
const string &LogicalStreamPass::GetName() const {
return name_;
}
bool LogicalStreamPass::IsEngineSkip(const Subgraph &subgraph) const {
return subgraph.engine_conf.skip_assign_stream;
}
bool LogicalStreamPass::IsEngineAttach(const Subgraph &subgraph) const {
return subgraph.engine_conf.attach;
}
bool LogicalStreamPass::IsEngineIndependent(const Subgraph &subgraph) const {
return subgraph.engine_conf.independent;
}
bool LogicalStreamPass::HasStreamLabel(const Subgraph &subgraph) const {
return !subgraph.subgraph_info.GetStreamLabel().empty();
}
bool LogicalStreamPass::HasAssignedStream(const Subgraph &subgraph) const {
return subgraph.stream_id != kInvalidStream;
}
Status AssignByLabelPass::Run(ComputeGraphPtr graph, const vector<SubgraphPtr> &subgraphs, Context &context) {
bool changed = false;
int64_t &next_stream = context.next_stream;
map<string, int64_t> label_streams;
for (const SubgraphPtr &subgraph : subgraphs) {
const string &stream_label = subgraph->subgraph_info.GetStreamLabel();
if (!stream_label.empty()) {
// Subgraphs of the same stream_label are assigned to the same stream,
// and different stream_labels are assigned new streams.
auto iter = label_streams.find(stream_label);
if (iter == label_streams.end()) {
subgraph->stream_id = next_stream;
GELOGI("[Assign][NewStreamId] %ld for label %s.", next_stream, stream_label.c_str());
label_streams.emplace(stream_label, next_stream);
next_stream++;
} else {
subgraph->stream_id = iter->second;
}
changed = true;
}
}
return changed ? SUCCESS : NOT_CHANGED;
}
Status IndependentStreamPass::Run(ComputeGraphPtr graph, const vector<SubgraphPtr> &subgraphs, Context &context) {
bool changed = false;
int64_t &next_stream = context.next_stream;
// <engine, <label, stream>>
map<string, map<string, int64_t>> engine_streams;
for (const SubgraphPtr &subgraph : subgraphs) {
if (!IsEngineIndependent(*subgraph)) {
continue;
}
const string &engine = subgraph->engine_conf.id;
const string &stream_label = subgraph->subgraph_info.GetStreamLabel();
auto &label_streams = engine_streams[engine];
auto iter = label_streams.find(stream_label);
if (iter == label_streams.end()) {
subgraph->stream_id = next_stream;
GELOGI("[Assign][NewStreamId:independent] %ld for engine %s (label: %s).", next_stream, engine.c_str(),
stream_label.c_str());
label_streams.emplace(stream_label, next_stream);
next_stream++;
} else {
subgraph->stream_id = iter->second;
}
changed = true;
}
return changed ? SUCCESS : NOT_CHANGED;
}
Status AssignByDependencyPass::Run(ComputeGraphPtr graph, const vector<SubgraphPtr> &subgraphs, Context &context) {
bool changed = false;
map<NodePtr, SubgraphPtr> end_subgraph_map;
map<NodePtr, SubgraphPtr> pld_subgraph_map;
InitEndSubgraphMap(subgraphs, end_subgraph_map);
InitPldSubgraphMap(subgraphs, pld_subgraph_map);
for (const SubgraphPtr &subgraph : subgraphs) {
if (HasAssignedStream(*subgraph)) {
continue;
}
SubgraphPtr reusable_subgraph = GetReusableSubgraph(subgraph, end_subgraph_map, pld_subgraph_map);
if (reusable_subgraph == nullptr) {
(void)AssignNewStream(subgraph);
} else {
if (HasAssignedStream(*reusable_subgraph)) {
subgraph->stream_id = reusable_subgraph->stream_id;
} else {
int64_t stream_id = AssignNewStream(reusable_subgraph);
subgraph->stream_id = stream_id;
GELOGI("[Assign][NewStreamId] %ld for Reusable subgraph %s cause has not been assigned before.",
stream_id, reusable_subgraph->name.c_str());
}
if (reusable_subgraph->reused_subgraph != nullptr) {
reusable_subgraph = reusable_subgraph->reused_subgraph;
}
subgraph->reused_subgraph = reusable_subgraph;
reused_subgraphs_.emplace_back(subgraph, reusable_subgraph);
GELOGI("[Reuse][Stream]Subgraph %s of engine %s reuses stream of subgraph %s of engine %s.",
subgraph->name.c_str(),
subgraph->engine_conf.id.c_str(), reusable_subgraph->name.c_str(),
reusable_subgraph->engine_conf.id.c_str());
}
changed = true;
}
UpdateAssignedSubgraphs(context);
UpdateReusedSubgraphs();
return changed ? SUCCESS : NOT_CHANGED;
}
void AssignByDependencyPass::InitEndSubgraphMap(const vector<SubgraphPtr> &subgraphs,
map<NodePtr, SubgraphPtr> &end_subgraph_map) {
for (const auto &subgraph : subgraphs) {
const SubGraphInfo &subgraph_info = subgraph->subgraph_info;
for (const auto &item : subgraph_info.GetEnd2PldMap()) {
end_subgraph_map.emplace(item.first, subgraph);
}
}
}
void AssignByDependencyPass::InitPldSubgraphMap(const vector<SubgraphPtr> &subgraphs,
map<NodePtr, SubgraphPtr> &pld_subgraph_map) {
for (const auto &subgraph : subgraphs) {
const SubGraphInfo &subgraph_info = subgraph->subgraph_info;
for (const auto &item : subgraph_info.GetPld2EndMap()) {
pld_subgraph_map.emplace(item.first, subgraph);
}
}
}
bool AssignByDependencyPass::CouldReuse(const SubgraphPtr &subgraph, const SubgraphPtr &pred_subgraph,
const map<NodePtr, SubgraphPtr> &pld_subgraph_map) {
if ((subgraph == nullptr) || (pred_subgraph == nullptr)) {
return false;
}
if (subgraph->engine_conf.scheduler_id != pred_subgraph->engine_conf.scheduler_id) {
return false;
}
if (IsEngineIndependent(*pred_subgraph) || HasStreamLabel(*pred_subgraph)) {
return false;
}
// If the engine of the predecessor subgraph is the same as the other successor subgraphs, the stream is not reused.
for (const auto &end_pld_pair : pred_subgraph->subgraph_info.GetEnd2PldMap()) {
auto iter = pld_subgraph_map.find(end_pld_pair.second);
if (iter != pld_subgraph_map.end()) {
const SubgraphPtr &pred_subgraph_succ = iter->second;
if ((pred_subgraph_succ != subgraph) &&
(pred_subgraph_succ->engine_conf.id == pred_subgraph->engine_conf.id)) {
return false;
}
}
}
if ((subgraph->engine_conf.id == pred_subgraph->engine_conf.id) ||
IsEngineAttach(*subgraph)) {
return true;
}
if ((pred_subgraph->reused_subgraph != nullptr) &&
(pred_subgraph->reused_subgraph->engine_conf.id == subgraph->engine_conf.id)) {
return true;
}
return false;
}
LogicalStreamPass::SubgraphPtr AssignByDependencyPass::GetReusableSubgraph(
const SubgraphPtr &subgraph, const map<NodePtr, SubgraphPtr> &end_subgraph_map,
const map<NodePtr, SubgraphPtr> &pld_subgraph_map) {
const SubGraphInfo &subgraph_info = subgraph->subgraph_info;
for (const auto &pld_2_end : subgraph_info.GetPld2EndMap()) {
const NodePtr &peer_end = pld_2_end.second;
auto iter = end_subgraph_map.find(peer_end);
if (iter != end_subgraph_map.end()) {
const SubgraphPtr &pred_subgraph = iter->second;
if (CouldReuse(subgraph, pred_subgraph, pld_subgraph_map)) {
return pred_subgraph;
}
}
}
return nullptr;
}
int64_t AssignByDependencyPass::AssignNewStream(SubgraphPtr subgraph) {
const string &engine_name = subgraph->engine_conf.id;
int64_t max_parallel_num = subgraph->max_parallel_num;
int64_t stream_id = 0;
auto next_iter = engine_next_streams_.find(engine_name);
if (next_iter != engine_next_streams_.end()) {
stream_id = next_iter->second;
}
if (stream_id >= max_parallel_num) {
stream_id = 0;
}
subgraph->stream_id = stream_id;
engine_next_streams_[engine_name] = stream_id + 1;
assigned_subgraphs_.emplace_back(subgraph);
if ((stream_id + 1) > engine_stream_num_[engine_name]) {
engine_stream_num_[engine_name] = stream_id + 1;
}
GELOGI("[Assign][NewStreamId:temp]id:%ld for Subgraph %s (engine: %s).", stream_id, subgraph->name.c_str(),
engine_name.c_str());
return stream_id;
}
void AssignByDependencyPass::UpdateAssignedSubgraphs(Context &context) {
// If the default stream is valid, the first assigned stream will reuse the default stream id
// and other streams use new id. To ensure that the id of the new stream is continuous,
// we first subtract one from next_stream.
int64_t to_be_updated_stream = kInvalidStream;
if (context.default_stream != kInvalidStream) {
context.next_stream--;
to_be_updated_stream = context.next_stream;
}
// Update the starting stream id for each engine.
int64_t &next_stream = context.next_stream;
map<string, int64_t> engine_start_streams;
for (const auto &item : engine_stream_num_) {
int64_t stream_count = item.second;
engine_start_streams[item.first] = next_stream;
next_stream += stream_count;
}
// Update the subgraph streams assigned by engine.
for (auto &subgraph : assigned_subgraphs_) {
subgraph->stream_id += engine_start_streams[subgraph->engine_conf.id];
if (subgraph->stream_id == to_be_updated_stream) {
subgraph->stream_id = context.default_stream;
GELOGI("Subgraph %s of engine %s reuses default stream %ld.", subgraph->name.c_str(),
subgraph->engine_conf.id.c_str(), context.default_stream);
} else {
GELOGI("[Update][StreamId]id:%ld for subgraph %s.", subgraph->stream_id, subgraph->name.c_str());
}
}
}
void AssignByDependencyPass::UpdateReusedSubgraphs() {
// Update streams for the subgraphs of reusing stream.
for (const auto &item : reused_subgraphs_) {
auto &cur_subgraph = item.first;
auto &reused_graph = item.second;
cur_subgraph->stream_id = reused_graph->stream_id;
GELOGI("[Update][StreamId]id:%ld for subgraph %s.", cur_subgraph->stream_id, cur_subgraph->name.c_str());
}
}
Status SingleStreamPass::Run(ComputeGraphPtr graph, const vector<SubgraphPtr> &subgraphs, Context &context) {
// context.default_stream can be kInvalidStream only when graph is the root graph.
int64_t new_stream = context.default_stream;
if (new_stream == kInvalidStream) {
new_stream = context.next_stream;
++context.next_stream;
}
for (const SubgraphPtr &subgraph : subgraphs) {
if (!HasAssignedStream(*subgraph)) {
const string &stream_label = subgraph->subgraph_info.GetStreamLabel();
if (!stream_label.empty()) {
REPORT_INNER_ERROR("E19999", "Stream labels are not supported in SingleStream mode "
"(subgraph: %s, stream label: %s)", subgraph->name.c_str(), stream_label.c_str());
GELOGE(INTERNAL_ERROR, "Stream labels are not supported (subgraph: %s, stream label: %s).",
subgraph->name.c_str(), stream_label.c_str());
return INTERNAL_ERROR;
}
subgraph->stream_id = new_stream;
}
}
return SUCCESS;
}
Status NodeStreamUpdatePass::Run(ComputeGraphPtr graph, const vector<SubgraphPtr> &subgraphs, Context &context) {
// Check if all subgraphs have been assigned a stream.
for (const SubgraphPtr &subgraph : subgraphs) {
const string &engine_name = subgraph->engine_conf.id;
if (!IsEngineSkip(*subgraph) && !HasAssignedStream(*subgraph)) {
REPORT_INNER_ERROR("E19999", "Subgraph %s has not yet been assigned a stream (engine: %s)",
subgraph->name.c_str(), engine_name.c_str());
GELOGE(INTERNAL_ERROR, "Subgraph %s has not yet been assigned a stream (engine: %s).", subgraph->name.c_str(),
engine_name.c_str());
return INTERNAL_ERROR;
} else {
GELOGI("[Assign][StreamId] %ld for Subgraph %s (engine: %s).", subgraph->stream_id, subgraph->name.c_str(),
engine_name.c_str());
}
}
// Init the stream id of node.
for (NodePtr &node : graph->GetDirectNode()) {
GE_CHECK_NOTNULL(node->GetOpDesc());
node->GetOpDesc()->SetStreamId(kInvalidStream);
}
// Set the stream id of the subgraph to the node.
for (const SubgraphPtr &subgraph : subgraphs) {
int64_t stream_id = subgraph->stream_id;
const string &engine_name = subgraph->engine_conf.id;
auto compute_graph = subgraph->subgraph_info.GetSubGraph();
for (NodePtr &node : compute_graph->GetDirectNode()) {
GE_CHECK_NOTNULL(node->GetOpDesc());
if (node->GetOpDesc()->HasAttr(ATTR_NAME_RTS_LABEL_NODE)) {
node->GetOpDesc()->SetStreamId(context.default_stream);
GELOGD("Node %s of type %s in subgraph %s is assigned parent stream %ld (engine: %s).", node->GetName().c_str(),
node->GetType().c_str(), subgraph->name.c_str(), context.default_stream, engine_name.c_str());
} else if (IsEngineSkip(*subgraph) && node->GetInNodes().empty()) {
GELOGD("[Skip][StreamIdAssign]Node %s of type %s in subgraph %s doesn't need (engine: %s).",
node->GetName().c_str(), node->GetType().c_str(), subgraph->name.c_str(), engine_name.c_str());
} else {
node->GetOpDesc()->SetStreamId(stream_id);
GELOGD("[Assign][StreamId]id:%ld for Node %s of type %s in subgraph %s (engine: %s).", stream_id,
node->GetName().c_str(), node->GetType().c_str(), subgraph->name.c_str(), engine_name.c_str());
}
}
}
return SUCCESS;
}
Status UpdateForParallelGroupPass::Run(ComputeGraphPtr graph, const vector<SubgraphPtr> &subgraphs, Context &context) {
std::map<int, vector<OpDescPtr>> stream_op_map;
for (const SubgraphPtr &subgraph : subgraphs) {
auto compute_graph = subgraph->subgraph_info.GetSubGraph();
for (const NodePtr &node : compute_graph->GetDirectNode()) {
OpDescPtr op_desc = node->GetOpDesc();
GE_CHECK_NOTNULL(op_desc);
if (op_desc->HasAttr(ATTR_NAME_PARALLEL_GROUP)) {
int64_t op_desc_stream_id = op_desc->GetStreamId();
stream_op_map[op_desc_stream_id].push_back(op_desc);
}
}
}
for (const auto &itr : stream_op_map) {
if (itr.first == kInvalidStream) {
continue;
}
std::map<std::string, int64_t> group_2_stream_id;
for (const auto &op_desc : itr.second) {
std::string group_name;
if (!AttrUtils::GetStr(op_desc, ATTR_NAME_PARALLEL_GROUP, group_name)) {
GELOGE(FAILED, "[GetAttr][OpDesc]Get node %s ATTR_NAME_PARALLEL_GROUP failed.", op_desc->GetName().c_str());
REPORT_INNER_ERROR("E19999", "Get node %s ATTR_NAME_PARALLEL_GROUP failed.", op_desc->GetName().c_str());
return FAILED;
}
const auto &itr = group_2_stream_id.find(group_name);
int64_t new_stream_id = kInvalidStream;
int64_t old_stream_id = op_desc->GetStreamId();
if (itr != group_2_stream_id.end()) {
new_stream_id = itr->second;
} else {
new_stream_id = context.next_stream++;
group_2_stream_id[group_name] = new_stream_id;
}
op_desc->SetStreamId(new_stream_id);
GELOGD("Node %s assigned stream %ld from stream %ld.",
op_desc->GetName().c_str(), new_stream_id, old_stream_id);
}
}
return SUCCESS;
}
int64_t UpdateForSkippedEnginePass::GetSingleInoutStream(const NodePtr &node) const {
set<int64_t> stream_ids;
for (const auto &in_node : node->GetInAllNodes()) {
GE_CHECK_NOTNULL_EXEC(in_node->GetOpDesc(), return kInvalidStream);
int64_t stream_id = in_node->GetOpDesc()->GetStreamId();
if (stream_id != kInvalidStream) {
stream_ids.insert(stream_id);
}
}
for (const auto &out_node : node->GetOutAllNodes()) {
GE_CHECK_NOTNULL_EXEC(out_node->GetOpDesc(), return kInvalidStream);
int64_t stream_id = out_node->GetOpDesc()->GetStreamId();
if (stream_id != kInvalidStream) {
stream_ids.insert(stream_id);
}
}
if (stream_ids.size() == 1) {
int64_t stream_id = *(stream_ids.begin());
GELOGI("[Get][SingleStreamId]The stream of all input and output nodes of node %s (type: %s) is %ld.",
node->GetName().c_str(), node->GetType().c_str(), stream_id);
return stream_id;
}
return kInvalidStream;
}
Status UpdateForSkippedEnginePass::Run(ComputeGraphPtr graph, const vector<SubgraphPtr> &subgraphs, Context &context) {
set<OpDescPtr> ops_without_label;
// Check if subgraph is engine skipped and without stream label or not
for (const SubgraphPtr &subgraph : subgraphs) {
if (IsEngineSkip(*subgraph)) {
auto compute_graph = subgraph->subgraph_info.GetSubGraph();
for (NodePtr &node : compute_graph->GetDirectNode()) {
auto op_desc = node->GetOpDesc();
GE_CHECK_NOTNULL(op_desc);
auto stream_id = op_desc->GetStreamId();
if ((stream_id != kInvalidStream) && !HasStreamLabel(*subgraph)) {
ops_without_label.emplace(op_desc);
}
}
}
}
// Try reassign the stream id
for (ge::NodePtr &node : graph->GetDirectNode()) {
auto op_desc = node->GetOpDesc();
GE_CHECK_NOTNULL(op_desc);
int64_t stream_id = op_desc->GetStreamId();
if (ops_without_label.find(op_desc) != ops_without_label.end()) {
if (AreAllPredStreamsInvalid(node) && op_desc->GetSubgraphInstanceNames().empty()) {
op_desc->SetStreamId(kInvalidStream);
GELOGI("Node %s of type %s reassign to stream %ld from stream %ld.", node->GetName().c_str(),
node->GetType().c_str(), kInvalidStream, stream_id);
} else if (!node->GetOutAllNodes().empty()) {
int64_t inout_stream = GetSingleInoutStream(node);
if (inout_stream != kInvalidStream) {
op_desc->SetStreamId(inout_stream);
GELOGI("[Reassign][StreamId]%ld for Node %s of type %s from stream %ld.",
inout_stream, node->GetName().c_str(), node->GetType().c_str(), stream_id);
}
}
}
}
return SUCCESS;
}
bool UpdateForSkippedEnginePass::AreAllPredStreamsInvalid(const NodePtr &node) const {
for (const auto &pre_node : node->GetInAllNodes()) {
auto pre_node_desc = pre_node->GetOpDesc();
if (pre_node_desc != nullptr) {
int64_t stream_id = pre_node_desc->GetStreamId();
if (stream_id != kInvalidStream) {
return false;
}
}
}
return true;
}
Status AllReduceParallelPass::Run(ComputeGraphPtr graph, const vector<SubgraphPtr> &subgraphs, Context &context) {
if (!context.enable_hcom_parallel) {
return NOT_CHANGED;
}
GELOGI("[Run][AllReduceParallelPass] start");
GE_DUMP(graph, "BeforeAllReduceParallel");
// All successors of HcomAllReduce.
set<NodePtr> all_reduce_succs;
for (const NodePtr &node : graph->GetDirectNode()) {
if (!IsHcomNode(node->GetType()) ||
(node->GetInDataNodes().size() <= 1)) {
continue;
}
string reduce_stream_label;
GE_CHECK_NOTNULL(node->GetOpDesc());
(void)AttrUtils::GetStr(node->GetOpDesc(), ATTR_NAME_STREAM_LABEL, reduce_stream_label);
set<NodePtr> cur_nodes = {node};
while (!cur_nodes.empty()) {
set<NodePtr> all_out_data_nodes;
for (auto &curr_node : cur_nodes) {
for (const NodePtr &out_node : curr_node->GetOutDataNodes()) {
string out_stream_label;
GE_CHECK_NOTNULL(out_node->GetOpDesc());
(void)AttrUtils::GetStr(out_node->GetOpDesc(), ATTR_NAME_STREAM_LABEL, out_stream_label);
// normally, Allreduce do not have streamLabel. when in horovod scenario Allreduce will have streamLabel
bool isSuccessorParallel =
(out_stream_label == reduce_stream_label) || (!reduce_stream_label.empty() && out_stream_label.empty());
if (isSuccessorParallel) {
all_reduce_succs.emplace(out_node);
all_out_data_nodes.emplace(out_node);
}
}
}
cur_nodes = all_out_data_nodes;
}
}
map<int64_t, int64_t> old_stream_to_new;
for (const NodePtr &node : all_reduce_succs) {
GE_CHECK_NOTNULL(node->GetOpDesc());
auto old_stream = node->GetOpDesc()->GetStreamId();
if (old_stream != kInvalidStream) {
int64_t new_stream = kInvalidStream;
auto iter = old_stream_to_new.find(old_stream);
if (iter != old_stream_to_new.end()) {
new_stream = iter->second;
} else {
new_stream = context.next_stream;
context.next_stream++;
old_stream_to_new.emplace(old_stream, new_stream);
}
if (!IsHcomNode(node->GetType())) {
GELOGI("Stream of node %s has been updated from %ld to %ld.", node->GetName().c_str(), old_stream, new_stream);
node->GetOpDesc()->SetStreamId(new_stream);
}
}
}
return !all_reduce_succs.empty() ? SUCCESS : NOT_CHANGED;
}
bool AllReduceParallelPass::IsHcomNode(const std::string& node_type) {
return (node_type == HCOMALLREDUCE || node_type == HVDCALLBACKALLREDUCE);
}
LogicalStreamAllocator::LogicalStreamAllocator(const map<string, SchedulerConf> &scheduler_confs,
const map<string, int> &max_parallel_num)
: scheduler_confs_(scheduler_confs), max_parallel_num_(max_parallel_num) {}
void LogicalStreamAllocator::EnableSingleStream(bool enable) { context_.enable_single_stream = enable; }
void LogicalStreamAllocator::EnableHcomParallel(bool enable) { context_.enable_hcom_parallel = enable; }
Status LogicalStreamAllocator::Assign(const ComputeGraphPtr &root_graph, const Graph2SubGraphInfoList &subgraph_map,
int64_t &stream_num) {
GE_CHECK_NOTNULL(root_graph);
map<string, EngineConfPtr> engine_confs;
GE_TIMESTAMP_START(InitEngineConfs);
for (const auto &item : scheduler_confs_) {
const SchedulerConf &scheduler = item.second;
for (const auto &engine_pair : scheduler.cal_engines) {
EngineConfPtr engine_conf = engine_pair.second;
if (engine_conf != nullptr) {
engine_confs[engine_pair.first] = engine_conf;
}
}
}
GE_TIMESTAMP_END(InitEngineConfs, "GraphBuilder::AssignStreamInitEngineConfs");
Status status = DoAssign(root_graph, subgraph_map, engine_confs);
if (status != SUCCESS) {
GELOGE(status, "Assign streams failed.");
return status;
}
vector<ComputeGraphPtr> subgraphs = root_graph->GetAllSubgraphs();
for (const ComputeGraphPtr &subgraph : subgraphs) {
Status status = DoAssign(subgraph, subgraph_map, engine_confs);
if (status != SUCCESS) {
GELOGE(status, "Assign streams failed.");
return status;
}
}
RefreshContinuousStreams(root_graph);
stream_num = context_.next_stream;
GELOGI("[Assign][LogicalStream] At last, stream num: %ld.", stream_num);
return SUCCESS;
}
Status LogicalStreamAllocator::DoAssign(const ComputeGraphPtr &graph, const Graph2SubGraphInfoList &subgraph_map,
const map<string, EngineConfPtr> &engine_confs) {
GE_CHECK_NOTNULL(graph);
NodePtr parent_node = graph->GetParentNode();
if ((parent_node == nullptr) || (parent_node->GetOpDesc() == nullptr)) {
context_.default_stream = kInvalidStream;
} else {
context_.default_stream = parent_node->GetOpDesc()->GetStreamId();
}
auto iter = subgraph_map.find(graph);
if (iter == subgraph_map.end()) {
REPORT_INNER_ERROR("E19999", "Graph %s not found in subgraph_map when do logical stream assign ",
graph->GetName().c_str());
GELOGE(FAILED, "Graph %s not found.", graph->GetName().c_str());
return FAILED;
}
const vector<SubGraphInfoPtr> &subgraph_info_list = iter->second;
vector<SubgraphPtr> subgraphs;
GE_TIMESTAMP_START(ConvertSubgraphs);
Status status = ConvertSubgraphs(subgraph_info_list, engine_confs, subgraphs);
GE_TIMESTAMP_END(ConvertSubgraphs, "GraphBuilder::AssignStreamConvertSubgraphs");
if (status != SUCCESS) {
GELOGE(status, "Create subgraphs failed.");
return status;
}
GELOGD("[Show][Subgraphs] in graph %s", graph->GetName().c_str());
for (const auto &subgraph : subgraphs) {
if (subgraph != nullptr) {
GELOGD("subgraph: %s", subgraph->name.c_str());
}
}
return RunPasses(graph, subgraphs);
}
Status LogicalStreamAllocator::ConvertSubgraphs(const vector<SubGraphInfoPtr> &subgraph_infos,
const map<string, EngineConfPtr> &engine_confs,
vector<SubgraphPtr> &subgraphs) {
for (auto &subgraph_info : subgraph_infos) {
GE_CHECK_NOTNULL(subgraph_info);
string subgraph_name;
ComputeGraphPtr computer_graph = subgraph_info->GetSubGraph();
if (computer_graph != nullptr) {
subgraph_name = computer_graph->GetName();
}
const string &engine_name = subgraph_info->GetEngineName();
auto engine_conf_iter = engine_confs.find(engine_name);
if ((engine_conf_iter == engine_confs.end()) || (engine_conf_iter->second == nullptr)) {
REPORT_INNER_ERROR("E19999", "Engine conf of subgraph %s not found (engine name: %s)",
subgraph_name.c_str(), engine_name.c_str());
GELOGE(INTERNAL_ERROR, "Engine conf of subgraph %s not found (engine name: %s).", subgraph_name.c_str(),
engine_name.c_str());
return INTERNAL_ERROR;
}
SubgraphPtr subgraph = MakeShared<Subgraph>(*subgraph_info, *engine_conf_iter->second);
GE_CHECK_NOTNULL(subgraph);
subgraph->name = subgraph_name;
auto parallel_iter = max_parallel_num_.find(engine_name);
if (parallel_iter != max_parallel_num_.end()) {
subgraph->max_parallel_num = parallel_iter->second;
}
subgraphs.emplace_back(subgraph);
}
return SUCCESS;
}
Status LogicalStreamAllocator::RunPasses(const ComputeGraphPtr &graph, const vector<SubgraphPtr> &subgraphs) {
vector<LogicalStreamPassPtr> passes;
if (context_.enable_single_stream) {
passes.emplace_back(MakeShared<SingleStreamPass>());
passes.emplace_back(MakeShared<NodeStreamUpdatePass>());
passes.emplace_back(MakeShared<UpdateForSkippedEnginePass>());
} else {
passes.emplace_back(MakeShared<AssignByLabelPass>());
passes.emplace_back(MakeShared<IndependentStreamPass>());
passes.emplace_back(MakeShared<AssignByDependencyPass>());
passes.emplace_back(MakeShared<NodeStreamUpdatePass>());
passes.emplace_back(MakeShared<UpdateForParallelGroupPass>());
passes.emplace_back(MakeShared<AllReduceParallelPass>());
passes.emplace_back(MakeShared<UpdateForSkippedEnginePass>());
}
for (auto &pass : passes) {
GE_CHECK_NOTNULL(pass);
Status status = pass->Run(graph, subgraphs, context_);
if (status == SUCCESS) {
GELOGD("[Show][Status]Stream pass %s return SUCCESS.", pass->GetName().c_str());
} else if (status == NOT_CHANGED) {
GELOGD("[Show][Status]Stream pass %s return NOT_CHANGED.", pass->GetName().c_str());
} else {
REPORT_CALL_ERROR("E19999", "Stream pass %s run failed.", pass->GetName().c_str());
GELOGE(status, "Stream pass %s failed.", pass->GetName().c_str());
return status;
}
}
return SUCCESS;
}
void LogicalStreamAllocator::RefreshContinuousStreams(const ComputeGraphPtr &graph) {
int64_t stream_num = context_.next_stream;
vector<bool> stream_has_node(stream_num);
for (const NodePtr &node : graph->GetNodes(graph->GetGraphUnknownFlag())) {
if (node != nullptr) {
auto op_desc = node->GetOpDesc();
if (op_desc != nullptr) {
int64_t stream_id = op_desc->GetStreamId();
if ((stream_id != kInvalidStream) && (stream_id < stream_num)) {
stream_has_node[stream_id] = true;
}
}
}
}
context_.next_stream = 0;
vector<int64_t> old_to_new_streams(stream_num, kInvalidStream);
for (size_t old_stream = 0; old_stream < stream_has_node.size(); old_stream++) {
if (stream_has_node[old_stream]) {
old_to_new_streams[old_stream] = context_.next_stream;
context_.next_stream++;
}
}
for (const NodePtr &node : graph->GetNodes(graph->GetGraphUnknownFlag())) {
auto op_desc = node->GetOpDesc();
if (op_desc != nullptr) {
int64_t stream_id = op_desc->GetStreamId();
if ((stream_id != kInvalidStream) && (stream_id < stream_num)) {
op_desc->SetStreamId(old_to_new_streams[stream_id]);
}
}
}
}
} // namespace ge