You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/graph/build/memory/block_mem_assigner.cc

2202 lines
89 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "graph/build/memory/block_mem_assigner.h"
#include <algorithm>
#include <sstream>
#include "external/ge/ge_api_types.h"
#include "framework/common/debug/ge_log.h"
#include "graph/anchor.h"
#include "graph/buffer.h"
#include "graph/ge_attr_value.h"
#include "graph/ge_context.h"
#include "graph/types.h"
#include "graph/node.h"
#include "graph/utils/graph_utils.h"
#include "graph/utils/node_utils.h"
#include "graph/utils/op_desc_utils.h"
#include "graph/utils/tensor_utils.h"
#include "graph/utils/type_utils.h"
#include "graph/debug/ge_attr_define.h"
#include "graph/common/local_context.h"
#include "graph/optimize/common/params.h"
#include "omg/omg_inner_types.h"
#include "runtime/mem.h"
using std::map;
using std::set;
using std::list;
using std::pair;
using std::string;
using std::stringstream;
using std::unordered_map;
using std::unordered_set;
using std::vector;
namespace {
const char *const kAttrNameWorkspaceReuseFlag = "workspace_reuse_flag";
const char *const kL2FusionDynamicConvergeOp = "l2fusion_dynamic_converge_op";
const char *const kOpNoReuseMem = "no_reuse_mem_flag";
const char *const OP_NO_REUSE_MEM = "OP_NO_REUSE_MEM";
const int kReuseMaxOpNum = 10;
const int kReuseMaxCharNum = 2000;
} // namespace
namespace ge {
void AlignMemOffset(size_t &mem_align_size) {
if (mem_align_size <= 0) {
return;
}
mem_align_size = (mem_align_size + MEM_ALIGN_SIZE - 1) / MEM_ALIGN_SIZE * MEM_ALIGN_SIZE;
}
static bool CompareLifeTime(const NodeTypeIndex &left, const NodeTypeIndex &right) {
if (left.GetLifeBegin() < right.GetLifeBegin()) {
return true;
}
return false;
}
void GetLifeList(const MemoryBlock &block, std::vector<NodeTypeIndex> &life_list, bool child) {
for (auto &node : block.NodeTypeIndexList()) {
life_list.emplace_back(node);
}
if (child) {
for (auto child_block : block.ChildBlockList()) {
if (child_block == nullptr) {
continue;
}
if (block.stream_id_ != child_block->stream_id_ || !block.same_stream_ || !child_block->same_stream_) {
life_list.clear();
return;
}
GetLifeList(*child_block, life_list, child);
}
}
}
bool CrossLifeTime(const NodeTypeIndex &left, const NodeTypeIndex &right) {
if ((left.node == nullptr) || (right.node == nullptr)) {
return true;
}
auto left_node_op_desc = left.node->GetOpDesc();
auto right_node_op_desc = right.node->GetOpDesc();
if ((left_node_op_desc != nullptr) && (right_node_op_desc != nullptr)) {
if (left.GetLifeBegin() < right.GetLifeBegin()) {
if (left.life_time_end >= right.GetLifeBegin()) {
return true;
}
} else if (left.GetLifeBegin() == right.GetLifeBegin()) {
return true;
} else {
if (right.life_time_end >= left.GetLifeBegin()) {
return true;
}
}
}
return false;
}
///
/// When child block's life time are not cross with parent block, they can be reused(only same stream).
/// |-----------------------------parent block---------------------|
/// |------child block1--------------||------child block2------|
/// |--child block1-1-|
///
bool CanIntervalLifeReuse(MemoryBlock &parent_block, MemoryBlock &child_block) {
// judge by interval life time, only same stream can be judged by interval life time
if (parent_block.stream_id_ != child_block.stream_id_ || !parent_block.same_stream_ || !child_block.same_stream_
|| parent_block.NodeTypeIndexList().empty() || child_block.NodeTypeIndexList().empty()) {
return false;
}
// quick judge by front and back node
if (CrossLifeTime(parent_block.NodeTypeIndexList().front(), child_block.NodeTypeIndexList().front())) {
return false;
}
if (CrossLifeTime(parent_block.NodeTypeIndexList().back(), child_block.NodeTypeIndexList().back())) {
return false;
}
std::vector<NodeTypeIndex> life_list;
GetLifeList(parent_block, life_list, false);
GetLifeList(child_block, life_list, true);
if (life_list.empty()) {
return false;
}
std::sort(life_list.begin(), life_list.end(), CompareLifeTime);
size_t pre_life_end = 0;
for (auto &node : life_list) {
auto node_op_desc = node.node->GetOpDesc();
if (node_op_desc != nullptr && pre_life_end >= static_cast<size_t>(node_op_desc->GetId())) {
// life time cross
return false;
}
pre_life_end = node.life_time_end;
}
GELOGI("Block size[%zu, %zu] life time are not cross.", parent_block.Size(), child_block.Size());
return true;
}
void MemoryBlock::SetHeadOffset(size_t offset) {
head_offset_ = offset;
size_t child_offset = head_offset_;
for (auto block : child_blocks_) {
if (block != nullptr) {
block->SetHeadOffset(child_offset);
child_offset += block->Size();
}
}
}
void MemoryBlock::SetTailOffset(size_t offset) {
tail_offset_ = offset;
size_t child_offset = head_offset_;
for (auto block : child_blocks_) {
if (block != nullptr) {
child_offset += block->Size();
block->SetTailOffset(child_offset - 1);
}
}
}
void MemoryBlock::Resize() {
size_t child_block_size = 0;
for (auto block : child_blocks_) {
if (block != nullptr) {
block->Resize();
child_block_size += block->Size();
}
}
auto iter = std::max_element(real_size_list_.begin(), real_size_list_.end());
if (iter == real_size_list_.end()) {
GELOGW("real_size_list_ is empty");
return;
} else {
size_t block_size = (child_block_size > *iter) ? child_block_size : *iter;
if ((block_size > 0) && (block_size % MEM_ALIGN_SIZE != 0)) {
AlignMemOffset(block_size);
}
block_size_ = block_size;
if (last_continuous_block_) {
block_size_ += MEM_ALIGN_SIZE;
}
}
}
size_t MemoryBlock::AlignSize() const {
size_t align_block_size = 0;
auto iter = std::max_element(real_size_list_.begin(), real_size_list_.end());
if (iter == real_size_list_.end()) {
GELOGW("real_size_list_ is empty");
} else {
align_block_size = *iter;
if ((align_block_size > 0) && (align_block_size % MEM_ALIGN_SIZE != 0)) {
AlignMemOffset(align_block_size);
}
}
return align_block_size;
}
bool MemoryBlock::IsSameBatchLabel() {
// only same batch label can reuse
if (batch_label_.empty() || node_type_index_list_.empty()) {
return false;
}
bool all_same_label = true;
for (size_t index = 1; index < node_type_index_list_.size(); ++index) {
if (node_type_index_list_[index].node == nullptr) {
continue;
}
std::string batch_label;
auto index_op_desc = node_type_index_list_[index].node->GetOpDesc();
GE_IF_BOOL_EXEC(index_op_desc == nullptr, continue);
// not all op has ATTR_NAME_BATCH_LABEL, no need check return value, only check out parameter
(void)ge::AttrUtils::GetStr(index_op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
if (batch_label_ != batch_label) {
all_same_label = false;
break;
}
}
return all_same_label;
}
bool CanNotLifeReuse(MemoryBlock *block) {
if ((block == nullptr) || !block->reuse_mem_ || block->deleted_block_) {
return true;
}
return false;
}
void MemoryBlock::AddContinuousLifeReuseBlock(MemoryBlock *block, DependStreamLife &total_node_depend_stream_life) {
// continuous memory case:only real_size is maximum can be reused and only one continuous memory in one block
auto it_block = std::max_element(std::begin(block->NoAlignSizeList()), std::end(block->NoAlignSizeList()));
auto it_this = std::max_element(std::begin(NoAlignSizeList()), std::end(NoAlignSizeList()));
if (it_block != std::end(block->NoAlignSizeList()) && it_this != std::end(NoAlignSizeList())) {
if ((continuous_block_ && block->continuous_block_) ||
(continuous_block_ && (*it_this < *it_block)) || (block->continuous_block_ && (*it_this > *it_block))) {
GELOGD("Conflict current block size:%zu continuous:%d, reuse block max size:%zu continuous:%d",
*it_this, continuous_block_, *it_block, block->continuous_block_);
return;
}
}
MemoryBlock *parent = nullptr;
MemoryBlock *child = nullptr;
// merge small block to large block
if (block->GetDependLifeBegin(stream_id_, total_node_depend_stream_life) > GetLifeEnd()) {
if ((block->child_offset_ + AlignSize()) <= *it_block) {
parent = block;
child = this;
}
}
if ((parent != nullptr) && (child != nullptr) && child->child_blocks_.empty()) {
parent->child_blocks_.emplace_back(child);
parent->child_offset_ += child->AlignSize();
child->deleted_block_ = true;
GELOGI("Add continuous block[%p size:%zu, stream id:%ld life time[begin:%zu, end:%zu]] to"
" block[%p size:%zu, stream id:%ld, life time[begin:%zu, end:%zu]]", child, child->block_size_,
child->stream_id_, child->GetLifeBegin(), child->GetLifeEnd(), parent, parent->block_size_,
parent->stream_id_, parent->GetLifeBegin(), parent->GetLifeEnd());
}
}
void MemoryBlock::AddLifeReuseBlock(MemoryBlock *block, DependStreamLife &total_node_depend_stream_life) {
if (CanNotLifeReuse(this) || CanNotLifeReuse(block) || (batch_label_ != block->batch_label_)) {
return;
}
if (block->continuous_block_) {
AddContinuousLifeReuseBlock(block, total_node_depend_stream_life);
return;
}
MemoryBlock *parent = nullptr;
MemoryBlock *child = nullptr;
// merge small block to large block
// noalign size 802816 + 802816 = 1605632 can reuse
// after 32 align size 802848 + 802848 > 1605664 can't reuse
// after 512 align size 803328 + 803328 > 1606144 can't reuse
// so 803328 + 803328 = 1606144 + 512 can reuse
if ((child_offset_ + block->AlignSize()) <= (AlignSize() + MEM_ALIGN_SIZE)) {
parent = this;
child = block;
} else if ((block->child_offset_ + AlignSize()) <= (block->AlignSize() + MEM_ALIGN_SIZE)) {
parent = block;
child = this;
}
if ((parent != nullptr) && (child != nullptr)) {
// Different streams must use stream dependency to judge the life cycle
// In case same stream if it has child block, can judge all the child block's life time in CanIntervalLifeReuse
bool can_block_life_reuse = (child->child_blocks_.empty()
&& (block->GetDependLifeBegin(stream_id_, total_node_depend_stream_life) > GetLifeEnd()));
if (!can_block_life_reuse && !CanIntervalLifeReuse(*parent, *child)) {
return;
}
parent->child_blocks_.emplace_back(child);
parent->child_offset_ += child->AlignSize();
child->deleted_block_ = true;
GELOGI("Add block[%p size:%zu, stream id:%ld life time[begin:%zu, end:%zu]] to"
" block[%p size:%zu, stream id:%ld, life time[begin:%zu, end:%zu]]", child, child->block_size_,
child->stream_id_, child->GetLifeBegin(), child->GetLifeEnd(), parent, parent->block_size_,
parent->stream_id_, parent->GetLifeBegin(), parent->GetLifeEnd());
}
}
size_t MemoryBlock::GetLifeBegin() {
size_t life_time = 0;
if (!node_type_index_list_.empty()) {
life_time = node_type_index_list_.front().GetLifeBegin();
}
return life_time;
}
/// |-stream 1-| |-stream 2-|
/// |--block1--| |--block---|
/// |--block2--| |--block---|
/// |--block3--|\ |--block---|
/// |--block---| \ |--block---|
/// |--block---| \|--block---|
/// |--block---| |--block7--|
/// |--block---| |--block---|
/// block7's first node's input node's life begin > block2's life end, block7 can reuse block1~block2
size_t MemoryBlock::GetDependLifeBegin(int64_t stream_id, DependStreamLife &total_node_depend_stream_life) {
AddDependLifeBegin(total_node_depend_stream_life);
auto it = depend_stream_life_.find(stream_id);
if (it == depend_stream_life_.end()) {
return 0;
}
return it->second;
}
void AddDependLife(const ge::NodePtr &org_node, const ge::NodePtr &node, int64_t stream_id,
std::map<int64_t, size_t> &depend_stream_life, DependStreamLife &total_node_depend_stream_life) {
GE_CHECK_NOTNULL_EXEC(node, return);
GE_CHECK_NOTNULL_EXEC(org_node, return);
auto node_desc = node->GetOpDesc();
GE_CHECK_NOTNULL_EXEC(node_desc, return);
auto node_id = node_desc->GetId();
auto stream_life = total_node_depend_stream_life.find(node_id);
if (stream_life != total_node_depend_stream_life.end()) {
for (auto &it : stream_life->second) {
if (depend_stream_life.find(it.first) == depend_stream_life.end()) {
depend_stream_life[it.first] = it.second;
}
}
return;
}
for (const auto &in_anchor : node->GetAllInAnchors()) {
GE_CHECK_NOTNULL_EXEC(in_anchor, continue);
for (auto peer_out_anchor : in_anchor->GetPeerAnchors()) {
GE_CHECK_NOTNULL_EXEC(peer_out_anchor, continue);
auto peer_node = peer_out_anchor->GetOwnerNode();
GE_CHECK_NOTNULL_EXEC(peer_node, continue);
auto peer_node_desc = peer_node->GetOpDesc();
GE_CHECK_NOTNULL_EXEC(peer_node_desc, continue);
auto peer_node_stream_id = peer_node_desc->GetStreamId();
if (peer_node_stream_id < 0) {
continue;
}
size_t peer_node_life_time = peer_node_desc->GetId();
auto it = depend_stream_life.find(peer_node_stream_id);
if (it == depend_stream_life.end() || peer_node_life_time > it->second) {
depend_stream_life[peer_node_stream_id] = peer_node_life_time;
if (peer_node_stream_id != stream_id) {
GELOGI("Node:%s stream id:%ld depend node:%s stream id:%ld index[%d] life time[%zu].",
org_node->GetName().c_str(), stream_id, peer_node_desc->GetName().c_str(),
peer_node_stream_id, peer_out_anchor->GetIdx(), peer_node_life_time);
}
AddDependLife(org_node, peer_node, stream_id, depend_stream_life, total_node_depend_stream_life);
}
}
}
// save on node to save next calculation
for (auto &it : depend_stream_life) {
if (total_node_depend_stream_life[node_id].find(it.first) == total_node_depend_stream_life[node_id].end()) {
total_node_depend_stream_life[node_id][it.first] = it.second;
}
}
}
void MemoryBlock::AddDependLifeBegin(DependStreamLife &total_node_depend_stream_life) {
if (!depend_stream_life_.empty()) {
return;
}
if (!node_type_index_list_.empty()) {
auto node = node_type_index_list_.front().node;
if (node != nullptr) {
AddDependLife(node, node, stream_id_, depend_stream_life_, total_node_depend_stream_life);
}
}
depend_stream_life_[stream_id_] = GetLifeBegin();
}
size_t MemoryBlock::GetLifeEnd() const {
if (!node_type_index_list_.empty()) {
return node_type_index_list_.back().life_time_end;
}
return kMaxLifeTime;
}
void MemoryBlock::SetLifeTimeEnd(size_t time) {
if (!node_type_index_list_.empty()) {
node_type_index_list_.back().life_time_end = time;
}
}
void SetLastUsedInputMemAttr(NodePtr &node, int input_index) {
if (node == nullptr) {
return;
}
auto node_op_desc = node->GetOpDesc();
if (node_op_desc != nullptr) {
auto input_desc = node_op_desc->MutableInputDesc(input_index);
if (!ge::AttrUtils::SetInt(*input_desc, ATTR_NAME_IS_END_OF_INPUTMEM_LIFECYCLE, true)) {
GELOGW("Set %s input[%d] ATTR_NAME_IS_END_OF_INPUTMEM_LIFECYCLE to true failed.", node_op_desc->GetName().c_str(),
input_index);
return;
}
GELOGD("Set %s input[%d] ATTR_NAME_IS_END_OF_INPUTMEM_LIFECYCLE to true success.", node_op_desc->GetName().c_str(),
input_index);
}
}
Status GetNoAlignSize(const ge::OpDesc &desc, uint32_t index, size_t &size) {
// calculate tensor real size
auto output_op_desc = desc.GetOutputDescPtr(index);
if (output_op_desc == nullptr) {
GELOGI("GetNoAlignSize failed. OpName: %s, OpType: %s, index: %d",
desc.GetName().c_str(), desc.GetType().c_str(), index);
return FAILED;
}
int64_t tensor_size = 0;
GeShape shape = output_op_desc->GetShape();
Format format = output_op_desc->GetFormat();
DataType data_type = output_op_desc->GetDataType();
graphStatus graph_status = TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size);
if (graph_status != GRAPH_SUCCESS) {
GELOGE(graph_status, "[Calculate][TensorSize]shape:%s, format:%s, data_type:%s, op:%s, out_index:%u",
shape.ToString().c_str(),
TypeUtils::FormatToSerialString(format).c_str(),
TypeUtils::DataTypeToSerialString(data_type).c_str(),
desc.GetName().c_str(), index);
REPORT_CALL_ERROR("E19999", "CalcTensorMemSize fail, shape:%s, format:%s, data_type:%s, op:%s, out_index:%u",
shape.ToString().c_str(),
TypeUtils::FormatToSerialString(format).c_str(),
TypeUtils::DataTypeToSerialString(data_type).c_str(),
desc.GetName().c_str(), index);
return FAILED;
}
size = static_cast<size_t>(tensor_size);
return SUCCESS;
}
string ToString(ge::NodeTypeIndex &x) {
stringstream ss;
ss << "[" << x.node->GetName() << "(" << x.node->GetType() << "), ";
if (x.mem_type == kOutput) {
ss << "Output, ";
} else {
ss << "Workspace, ";
}
ss << x.index << "]";
return ss.str();
}
string MemoryBlock::String() {
stringstream ss;
ss << "Block size: " << Size() << " from " << HeadOffset() << " to " << TailOffset() << " ";
ss << "real_size_list: " << ToString(real_size_list_) << " ";
ss << "ref_count: " << ref_count_ << " ";
ss << "members: ";
for (auto x : NodeTypeIndexList()) {
ss << "__node: " << ToString(x) << " ";
}
for (const auto& symbol : SymbolList()) {
ss << "__symbol: " << symbol << " ";
}
ss << "memory_type: " << memory_type_ << " ";
return ss.str();
}
BlockMemAssigner::BlockMemAssigner(ComputeGraphPtr compute_graph, const map<string, string> &anchor_to_symbol,
const map<string, list<NodeIndexIO>> &symbol_to_anchors)
: mem_offset_(0), p2p_mem_offset_(0), compute_graph_(std::move(compute_graph)),
symbol_to_anchors_(symbol_to_anchors), anchor_to_symbol_(anchor_to_symbol), life_time_(0) {}
BlockMemAssigner::~BlockMemAssigner() {
GELOGD("[Destruct][BlockMemAssigner]blocks_store_ size : %lu", blocks_store_.size());
for (MemoryBlock *memory_block : blocks_store_) {
GE_DELETE_NEW_SINGLE(memory_block);
}
}
void GetMaxBatchAllMemorySize(std::map<std::string, vector<int64_t>> &batch_all_memory_size,
std::map<std::string, int64_t> batch_total_size, vector<int64_t> &all_memory_size,
std::string &max_batch_label) {
// use max batch all memory size for reuse range
int64_t max_batch_size = 0;
for (const auto &it : batch_total_size) {
GELOGI("Batch[%s] total memory size[%ld]", it.first.c_str(), it.second);
// no batch label
if (it.first.empty()) {
continue;
}
if (it.second > max_batch_size) {
max_batch_size = it.second;
max_batch_label = it.first;
}
}
GELOGI("Max batch[%s] total memory size[%ld]", max_batch_label.c_str(), max_batch_size);
for (const auto &it : batch_all_memory_size) {
if (it.first.empty() || (it.first == max_batch_label)) {
all_memory_size.insert(all_memory_size.end(), it.second.begin(), it.second.end());
}
}
// all_memory_size can't be empty
if (all_memory_size.empty()) {
all_memory_size.emplace_back(MEM_ALIGN_SIZE);
}
sort(all_memory_size.begin(), all_memory_size.end());
GELOGD("All memory size: %s", ToString(all_memory_size).c_str());
for (auto iter = all_memory_size.begin(); iter != all_memory_size.end();) {
if (*iter == 0) {
iter = all_memory_size.erase(iter);
} else {
++iter;
}
}
}
void BlockMemAssigner::MarkContinuousAllocedForOneInputFromVariable(const NodePtr &node) {
auto node_op_desc = node->GetOpDesc();
GE_IF_BOOL_EXEC(node_op_desc == nullptr, return);
// if input size just one and from variable, no need to reassign continuous memory
bool is_input_continuous = false;
(void)ge::AttrUtils::GetBool(node_op_desc, ATTR_NAME_CONTINUOUS_INPUT, is_input_continuous);
if (is_input_continuous && (node_op_desc->GetInputsSize() == 1)) {
auto peer_out_anchor = node->GetInDataAnchor(0)->GetPeerOutAnchor();
GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, return);
auto in_node = peer_out_anchor->GetOwnerNode();
GE_IF_BOOL_EXEC(in_node == nullptr, return);
if (in_node->GetType() == VARIABLE || in_node->GetType() == CONSTANT) {
GELOGI("node only one input and from variable, set continuous alloced. node_name:%s", node->GetName().c_str());
(void)ge::AttrUtils::SetBool(node_op_desc, ATTR_NAME_CONTINUOUS_INPUT_ALLOC, true);
}
}
}
void BlockMemAssigner::GetOutAndWorkSpaceMem(vector<int64_t> &all_memory_size) {
vector<int64_t> temp;
std::map<std::string, vector<int64_t>> batch_all_memory_size;
std::map<std::string, int64_t> batch_total_size;
for (const NodePtr &n : compute_graph_->GetAllNodes()) {
MarkContinuousAllocedForOneInputFromVariable(n);
auto node_op_desc = n->GetOpDesc();
GE_IF_BOOL_EXEC(node_op_desc == nullptr, continue);
if (CheckIsZeroMemNodeType(node_op_desc->GetType())) {
continue;
}
std::string batch_label;
(void)ge::AttrUtils::GetStr(node_op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
if (node_op_desc->GetType() == ATOMICADDRCLEAN) {
atomic_addr_clean_id_ = node_op_desc->GetId();
}
for (auto &out_anchor : n->GetAllOutDataAnchors()) {
auto output_desc = node_op_desc->GetOutputDescPtr(out_anchor->GetIdx());
int64_t size = 0;
GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(*output_desc, size) != SUCCESS, GELOGI("Get size failed"));
GE_IF_BOOL_EXEC(size < 0,
GELOGE(FAILED, "[Check][TensorSize]tensor_size:%ld is invalid, "
"maybe it is unknown shape node, Node_name:%s",
size, node_op_desc->GetName().c_str());
REPORT_INNER_ERROR("E19999", "tensor_size:%ld is invalid, "
"maybe it is unknown shape node, Node_name:%s",
size, node_op_desc->GetName().c_str());
return;);
batch_all_memory_size[batch_label].emplace_back(size);
if (batch_total_size.find(batch_label) == batch_total_size.end()) {
batch_total_size[batch_label] = size;
} else {
batch_total_size[batch_label] += size;
}
if (!anchor_to_symbol_.empty()) {
auto iter1 = anchor_to_symbol_.find(NodeIndexIO(n, out_anchor->GetIdx(), kOut).ToString());
if (iter1 == anchor_to_symbol_.end()) {
continue;
}
const std::string &symbol = iter1->second;
auto iter2 = symbol_size_.find(symbol);
if (iter2 == symbol_size_.end()) {
symbol_size_[symbol] = size;
} else if (size > static_cast<int64_t>(iter2->second)) {
iter2->second = size;
}
}
}
temp.clear();
GetNodeWorkSpaceSize(n, temp, batch_total_size[batch_label]);
batch_all_memory_size[batch_label].insert(batch_all_memory_size[batch_label].end(), temp.begin(), temp.end());
}
GELOGI("The last atomic_addr_clean node id: %ld", atomic_addr_clean_id_);
GetMaxBatchAllMemorySize(batch_all_memory_size, batch_total_size, all_memory_size, max_batch_label_);
InitReuseFlag();
PrintSymbolMap();
}
///
/// @ingroup domi
/// @brief decide memory size based on actual input memory size
/// @param [in] size actual memory size in need
/// @param [in] ranges memory size provided
/// @return size_t memory size to apply
///
size_t GetBlockSize(size_t size, const vector<int64_t> &ranges) {
for (int64_t x : ranges) {
auto x_temp = static_cast<size_t>(x);
if (size <= x_temp) {
return x_temp;
}
}
GELOGW("Memory needed size:%zu is beyond the biggest block in memory ranges.", size);
return size;
}
bool IsDirectOutputNode(const NodePtr &node, int idx) {
if ((node != nullptr) && (node->GetOpDesc() != nullptr) && (node->GetOpDesc()->GetType() == NETOUTPUT)) {
GELOGD("This is netoutput node, the input node mem can not be reused");
return true;
}
return false;
}
bool CanReuseBlock(size_t continuous_life_begin, const MemoryBlock &reusable_block, size_t block_size) {
bool can_reuse = false;
if (reusable_block.Size() == block_size) {
// in some continuous input case, continuous first input node's is not same as topo first node.
if (continuous_life_begin > 0) {
if (continuous_life_begin > reusable_block.GetLifeEnd()) {
can_reuse = true;
}
} else {
can_reuse = true;
}
}
return can_reuse;
}
bool BlockMemAssigner::IsOutNodeSetContinuousInput(const NodePtr &n, uint32_t out_index, std::string &peer_name,
uint32_t &peer_input_index,
bool &no_need_assign_memory, bool &reset_zero_copy_flag) {
if (n == nullptr || n->GetAllOutDataAnchors().size() <= 0) {
return false;
}
auto node_desc = n->GetOpDesc();
GE_IF_BOOL_EXEC(node_desc == nullptr, GELOGE(FAILED, "Node[%s] nodedesc is null.", n->GetName().c_str());
return false;);
std::vector<int64_t> offsets_for_fusion = {};
bool has_lx_fusion_attr =
AttrUtils::GetListInt(node_desc, ATTR_NAME_OUTPUT_OFFSET_FOR_BUFFER_FUSION, offsets_for_fusion);
if (static_cast<size_t>(out_index) < n->GetAllOutDataAnchors().size()) {
auto out_anchor = n->GetOutDataAnchor(out_index);
GE_IF_BOOL_EXEC(out_anchor == nullptr,
GELOGE(FAILED, "[Check][Anchor]Node[%s] output[%u] anchor is null.",
n->GetName().c_str(), out_index);
REPORT_INNER_ERROR("E19999", "output anchor is null, node_name: %s output_index: %u.",
n->GetName().c_str(), out_index);
return false;);
for (auto const &peer_in_anchor : out_anchor->GetPeerInDataAnchors()) {
GE_IF_BOOL_EXEC(peer_in_anchor == nullptr,
GELOGE(FAILED, "[Check][Anchor]Node[%s] output[%u] peer_in_anchor 0 is null.",
n->GetName().c_str(), out_index);
REPORT_INNER_ERROR("E19999", "output anchor peer is null, node_name: %s output_index: %u.",
n->GetName().c_str(), out_index);
return false;);
auto peer_node = peer_in_anchor->GetOwnerNode();
GE_IF_BOOL_EXEC(peer_node == nullptr,
GELOGE(FAILED, "[Check][Node]Node[%s] output[%u] peer node is null.",
n->GetName().c_str(), out_index);
REPORT_INNER_ERROR("E19999", "output anchor peer node is null, node_name: %s output_index: %u.",
n->GetName().c_str(), out_index);
return false;);
// Get the continuous input type of the node, default is false
bool is_input_continuous = false;
auto peer_in_node_desc = peer_node->GetOpDesc();
GE_IF_BOOL_EXEC(peer_in_node_desc == nullptr,
GELOGE(FAILED, "[Check][OpDesc]Node[%s] output[%u] nodedesc is null.",
n->GetName().c_str(), out_index);
REPORT_INNER_ERROR("E19999", "output anchor peer op_desc is null, node_name:%s output_index:%u.",
n->GetName().c_str(), out_index);
return false;);
// If GetBool fail, is_input_continuous is false.
(void)ge::AttrUtils::GetBool(peer_in_node_desc, ATTR_NAME_NOPADDING_CONTINUOUS_INPUT, is_input_continuous);
if (is_input_continuous) {
reset_zero_copy_flag = true;
has_lx_fusion_attr = true;
} else {
(void)ge::AttrUtils::GetBool(peer_in_node_desc, ATTR_NAME_CONTINUOUS_INPUT, is_input_continuous);
}
// lx_fusion memory only assign first input, broadcast's input some are variable some are not, reassign later
GE_IF_BOOL_EXEC(is_input_continuous &&
(CheckIsZeroMemNodeType(peer_node->GetType()) || (has_lx_fusion_attr && (peer_in_anchor->GetIdx() != 0))),
GELOGI("Node[%s] output[%u] no_need_assign_memory.", n->GetName().c_str(), out_index);
no_need_assign_memory = true;
return false;);
if (is_input_continuous) {
if (n->GetOwnerComputeGraph() != nullptr) {
string graph_name = n->GetOwnerComputeGraph()->GetName();
GELOGI("%s name[%s] output[%u] node[%s] set input[%d] continuous, input size[%u].", graph_name.c_str(),
n->GetName().c_str(), out_index, peer_in_node_desc->GetName().c_str(), peer_in_anchor->GetIdx(),
peer_node->GetAllInDataAnchorsSize());
// Only set attr one times.
if (node_continuous_input_blocks_[peer_in_node_desc->GetName()].size() == 0) {
(void)ge::AttrUtils::SetBool(peer_in_node_desc, ATTR_NAME_CONTINUOUS_INPUT_ALLOC, true);
// lx fusion case assign max size for first block, so reuse as none continuous
GE_IF_BOOL_EXEC(has_lx_fusion_attr,
is_op_reuse_mem_ = IsContinuousMemoryReuse(n, peer_node, out_index);
return false;);
node_continuous_input_counts_[peer_in_node_desc->GetName()] = peer_node->GetAllInDataAnchorsSize();
}
peer_input_index = peer_in_anchor->GetIdx();
peer_name = peer_in_node_desc->GetName();
return true;
}
}
}
}
return false;
}
bool IsContinuousInputNodeMaxLife(const NodePtr &n, uint32_t out_index) {
if (n == nullptr) {
return false;
}
int64_t max_node_life_time = 0;
int64_t continuous_input_node_life_time = 0;
if (static_cast<size_t>(out_index) < n->GetAllOutDataAnchors().size()) {
auto out_anchor = n->GetOutDataAnchor(out_index);
if(out_anchor == nullptr) {
return false;
}
// continuous input node's life time should be max
for (auto const &peer_in_anchor : out_anchor->GetPeerInDataAnchors()) {
if ((peer_in_anchor == nullptr) || (peer_in_anchor->GetOwnerNode() == nullptr)){
return false;
}
auto peer_in_node_desc = peer_in_anchor->GetOwnerNode()->GetOpDesc();
GE_IF_BOOL_EXEC(peer_in_node_desc == nullptr,
GELOGE(FAILED, "Node[%s] output[%u] peer in node desc is null.", n->GetName().c_str(), out_index);
return false;);
if(peer_in_node_desc->GetId() > max_node_life_time) {
max_node_life_time = peer_in_node_desc->GetId();
}
// If GetBool fail, is_input_continuous is false.
bool is_input_continuous = false;
(void)ge::AttrUtils::GetBool(peer_in_node_desc, ATTR_NAME_NOPADDING_CONTINUOUS_INPUT, is_input_continuous);
if (!is_input_continuous) {
(void)ge::AttrUtils::GetBool(peer_in_node_desc, ATTR_NAME_CONTINUOUS_INPUT, is_input_continuous);
}
if (is_input_continuous) {
continuous_input_node_life_time = peer_in_node_desc->GetId();
}
}
}
return ((max_node_life_time != 0) && (continuous_input_node_life_time == max_node_life_time)) ;
}
///
/// @ingroup GE
/// @brief Check continuous memory reuseable
/// @return void
///
bool BlockMemAssigner::IsContinuousMemoryReuse(const NodePtr &n, const NodePtr &peer_node, uint32_t out_index) {
// n,peer_node_desc have been checked
auto node_desc = n->GetOpDesc();
auto peer_node_desc = peer_node->GetOpDesc();
continuous_life_begin_ = static_cast<size_t>(node_desc->GetId());
// lx fusion case check all continuous input node, firt input node's life time should be min
for (const auto &in_anchor : peer_node->GetAllInDataAnchors()) {
if ((in_anchor == nullptr) || (in_anchor->GetPeerOutAnchor() == nullptr) ||
(in_anchor->GetPeerOutAnchor()->GetOwnerNode() == nullptr) ||
(in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetOpDesc() == nullptr)) {
GELOGE(FAILED, "[Check][OpDesc]Node[%s] output[%u] peer input node desc is null.",
n->GetName().c_str(), out_index);
REPORT_INNER_ERROR("E19999", "get output anchor peer op_desc fail, node_name: %s output_index: %u.",
n->GetName().c_str(), out_index);
return false;
}
auto peer_out_node_desc = in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetOpDesc();
///
/// node2 node1 node3
/// | / / |
/// node5 node6
/// firt input node's life time is not min
/// when node5's first input node2's life time is not min(node2 > node1), use node1's life time to reuse
///
if (static_cast<size_t>(peer_out_node_desc->GetId()) < continuous_life_begin_) {
continuous_life_begin_ = static_cast<size_t>(peer_out_node_desc->GetId());
GELOGI(
"Node[%s] life[%ld] output[%u] is not continuous input node[%s] life[%ld]'s min life time,"
"min is node[%s] life[%zu]",
n->GetName().c_str(), node_desc->GetId(), out_index, peer_node_desc->GetName().c_str(),
peer_node_desc->GetId(), peer_out_node_desc->GetName().c_str(), continuous_life_begin_);
}
// when node3's output node5's life time is not max(node6 > node5), not reuse
if (!IsContinuousInputNodeMaxLife(in_anchor->GetPeerOutAnchor()->GetOwnerNode(),
in_anchor->GetPeerOutAnchor()->GetIdx())) {
GELOGI(
"Node[%s] life[%ld] output[%u]'s continuous input node[%s] life[%ld]'s is not node[%s] output[%d]'s "
"max life node",
n->GetName().c_str(), node_desc->GetId(), out_index, peer_node_desc->GetName().c_str(),
peer_node_desc->GetId(), peer_out_node_desc->GetName().c_str(), in_anchor->GetPeerOutAnchor()->GetIdx());
return false;
}
}
return true;
}
///
/// @ingroup GE
/// @brief Check pre_reuse flag & post_reuse glag for each symbol
/// @return void
///
void BlockMemAssigner::InitReuseFlag() {
static const std::set<std::string> kPreReuseTypes = { ge::DATA_TYPE, ge::AIPP_DATA_TYPE, ge::ANN_DATA_TYPE,
ge::NETOUTPUT, ge::PROPOSAL, ge::ZEROSLIKE,
ge::CONSTANT, ge::CONSTANTOP };
static const std::set<std::string> kPostReuseTypes = { ge::DATA_TYPE, ge::AIPP_DATA_TYPE, ge::ENTER, ge::REFENTER,
ge::NEXTITERATION, ge::REFNEXTITERATION };
for (const auto &pair : symbol_to_anchors_) {
std::string symbol = pair.first;
bool pre_reuse_flag = true;
bool post_reuse_flag = true;
// default memory type
int64_t mem_type = RT_MEMORY_HBM;
GetSymbolMemType(pair.second, mem_type);
GELOGD("The memory type of symbol[%s] is [%ld]].", symbol.c_str(), mem_type);
if (mem_type == RT_MEMORY_P2P_DDR) {
UpdateOpTensorMemType(pair.second, mem_type);
}
// Only the memory with special requirements is processed. The HBM uses the default processing mode.
if (mem_type == RT_MEMORY_P2P_DDR) {
symbol_to_mem_type_[symbol] = mem_type;
}
for (const auto &node_index_io : pair.second) {
if (node_index_io.io_type_ == kIn) {
continue;
}
OutDataAnchorPtr out_anchor = node_index_io.node_->GetOutDataAnchor(node_index_io.index_);
if (out_anchor == nullptr) {
continue;
}
bool out_flg = false;
if (node_index_io.node_->GetOutDataNodes().empty()) {
out_flg = true;
}
for (const auto &in_anchor : out_anchor->GetPeerInDataAnchors()) {
if (IsDirectOutputNode(in_anchor->GetOwnerNode(), in_anchor->GetIdx())) {
out_flg = true;
break;
}
}
const std::string &type = out_anchor->GetOwnerNode()->GetType();
pre_reuse_flag = pre_reuse_flag && !out_flg && (kPreReuseTypes.count(type) == 0);
post_reuse_flag = post_reuse_flag && (kPostReuseTypes.count(type) == 0);
if (!pre_reuse_flag && !post_reuse_flag) {
break;
}
}
pre_reuse_flag_[symbol] = pre_reuse_flag;
post_reuse_flag_[symbol] = post_reuse_flag;
}
}
///
/// @ingroup GE
/// @brief get pre_reuse flag
/// @param [in] node
/// @param [in] out_index
/// @return bool
///
bool BlockMemAssigner::IsPreReuse(const NodePtr &node, uint32_t out_index) const {
OutDataAnchorPtr out_data_anchor = nullptr;
if (static_cast<size_t>(out_index) < node->GetAllOutDataAnchors().size()) {
out_data_anchor = node->GetOutDataAnchor(out_index);
}
if (out_data_anchor == nullptr) {
return false;
}
NodeIndexIO cur_node_index_io(out_data_anchor->GetOwnerNode(), out_data_anchor->GetIdx(), kOut);
auto iter1 = anchor_to_symbol_.find(cur_node_index_io.ToString());
if (iter1 == anchor_to_symbol_.end()) {
return false;
}
const std::string &symbol = iter1->second;
auto iter2 = pre_reuse_flag_.find(symbol);
if (iter2 == pre_reuse_flag_.end()) {
return false;
}
return iter2->second;
}
///
/// @ingroup GE
/// @brief get post_reuse flag
/// @param [in] mem_block
/// @return bool
///
bool BlockMemAssigner::IsPostReuse(const MemoryBlock *mem_block) const {
if (mem_block == nullptr) {
return false;
}
for (const auto &symbol : mem_block->SymbolList()) {
auto iter = post_reuse_flag_.find(symbol);
if (iter == post_reuse_flag_.end()) {
continue;
}
if (!iter->second) {
return false;
}
}
return true;
}
///
/// @ingroup GE
/// @brief check if symbol of cur node_index_io has block
/// @param [in] node_index_io
/// @param [out] symbol
/// @return bool
///
bool BlockMemAssigner::IsSymbolExist(const NodeIndexIO &node_index_io, string &symbol) {
auto iter = anchor_to_symbol_.find(node_index_io.ToString());
if (iter == anchor_to_symbol_.end()) {
return false;
}
symbol = iter->second;
return symbol_blocks_.find(iter->second) != symbol_blocks_.end();
}
///
/// @ingroup GE
/// @brief Print symbol
/// @return void
///
void BlockMemAssigner::PrintSymbolMap() {
for (const auto &pair : symbol_to_anchors_) {
GELOGD("symbol=%s, max_size=%zu, pre_reuse=%s, post_reuse=%s", pair.first.c_str(), symbol_size_[pair.first],
pre_reuse_flag_[pair.first] ? "true" : "false", post_reuse_flag_[pair.first] ? "true" : "false");
for (const auto &node_index_io : pair.second) {
GELOGD("anchor:%s", node_index_io.ToString().c_str());
}
}
}
void BlockMemAssigner::GetSymbolMemType(std::list<NodeIndexIO> node_index_io_list, int64_t &memory_type) {
memory_type = RT_MEMORY_HBM;
vector<int64_t> memory_types;
for (auto &node_index_io : node_index_io_list) {
auto op_desc = node_index_io.node_->GetOpDesc();
if (op_desc == nullptr) {
GELOGW("Node[%s] op desc is null.", node_index_io.node_->GetName().c_str());
return;
}
if (node_index_io.io_type_ == kIn) {
vector<int64_t> input_memory_types;
(void) ge::AttrUtils::GetListInt(op_desc, ATTR_NAME_INPUT_MEM_TYPE_LIST, input_memory_types);
if (!input_memory_types.empty() && node_index_io.index_ < input_memory_types.size()) {
int64_t input_memory_type = input_memory_types[node_index_io.index_];
GELOGD("Node[%s]: the memory type of input index [%u] is [%ld]].", op_desc->GetName().c_str(),
node_index_io.index_, input_memory_type);
memory_types.emplace_back(input_memory_type);
}
}
if (node_index_io.io_type_ == kOut) {
vector<int64_t> output_memory_types;
(void) ge::AttrUtils::GetListInt(op_desc, ATTR_NAME_OUTPUT_MEM_TYPE_LIST, output_memory_types);
if (!output_memory_types.empty() && node_index_io.index_ < output_memory_types.size()) {
int64_t output_memory_type = output_memory_types[node_index_io.index_];
GELOGD("Node[%s]: the memory type of output index [%u] is [%ld]].", op_desc->GetName().c_str(),
node_index_io.index_, output_memory_type);
memory_types.emplace_back(output_memory_type);
}
}
}
// memory priority
for (auto node_memory_type : memory_types) {
if (node_memory_type > memory_type) {
memory_type = node_memory_type;
}
}
}
void BlockMemAssigner::UpdateOpTensorMemType(std::list<NodeIndexIO> node_index_io_list, int64_t memory_type) {
for (auto &node_index_io : node_index_io_list) {
auto op_desc = node_index_io.node_->GetOpDesc();
if (op_desc == nullptr) {
GELOGW("Node[%s] op desc is null.", node_index_io.node_->GetName().c_str());
return;
}
if (node_index_io.io_type_ == kIn) {
auto input_desc = op_desc->MutableInputDesc(node_index_io.index_);
(void) AttrUtils::SetInt(input_desc, ATTR_NAME_TENSOR_MEM_TYPE, memory_type);
}
if (node_index_io.io_type_ == kOut) {
auto output_desc = op_desc->MutableOutputDesc(node_index_io.index_);
(void) AttrUtils::SetInt(output_desc, ATTR_NAME_TENSOR_MEM_TYPE, memory_type);
}
}
}
bool BlockMemAssigner::IsContinuousOutput(const NodePtr &n) {
if (n == nullptr) {
GELOGE(FAILED, "Node is null.");
return false;
}
// Get the continuous output type of the node, default is false
bool is_output_continuous = false;
auto node_desc = n->GetOpDesc();
if (node_desc == nullptr) {
GELOGE(FAILED, "Node[%s] nodedesc is null.", n->GetName().c_str());
return false;
}
// If GetBool fail, is_output_continuous is false.
(void)ge::AttrUtils::GetBool(node_desc, ATTR_NAME_CONTINUOUS_OUTPUT, is_output_continuous);
if (is_output_continuous) {
if (n->GetOwnerComputeGraph() != nullptr) {
string graph_name = n->GetOwnerComputeGraph()->GetName();
GELOGI("%s name[%s] set continuous, output size[%u].", graph_name.c_str(),
n->GetName().c_str(), n->GetAllOutDataAnchorsSize());
return true;
}
}
return false;
}
bool BlockMemAssigner::IsZeroCopyBlock(const NodePtr &node, bool continuous) {
if (NodeUtils::IsDynamicShape(node)) {
return ((node->GetType() == DATA_TYPE) && !continuous) || (node->GetType() == NETOUTPUT);
}
if ((node->GetType() == DATA_TYPE) && !continuous) {
return !node->GetOpDesc()->HasAttr(ATTR_NAME_PARENT_NODE_INDEX);
}
if (node->GetType() == NETOUTPUT) {
const auto &owner = node->GetOwnerComputeGraph();
return owner->GetParentGraph() == nullptr;
}
return false;
}
MemoryBlock *BlockMemAssigner::ApplyMemory(size_t block_size, size_t real_size, size_t no_align_size,
OpMemoryType mem_type, const NodePtr &n, uint32_t out_index,
const vector<bool> &workspace_reuse_flag, const bool is_op_reuse_mem,
const bool continuous, int64_t memory_type) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
n == nullptr,
REPORT_INNER_ERROR("E19999", "Input parameter n(type:node_ptr) is null, apply memory failed");
return nullptr, "[Check][Param]Input parameter n(type:node_ptr) is null.");
auto node_op_desc = n->GetOpDesc();
GE_IF_BOOL_EXEC(node_op_desc == nullptr, return nullptr);
std::string batch_label;
(void)ge::AttrUtils::GetStr(node_op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
if (batch_label.empty() || (batch_label == max_batch_label_)) {
size_t align_size = real_size;
AlignMemOffset(align_size);
theory_memory_size_ += align_size;
if (theory_memory_size_ > theory_min_memory_size_) {
theory_min_memory_size_ = theory_memory_size_;
}
}
bool is_reuse_memory = false;
if (ge_disable_reuse_mem_env_ != "1") {
bool reuse_mem_flag = (mem_type == kOutput) ? IsPreReuse(n, out_index) :
!((workspace_reuse_flag.size() > out_index) && !workspace_reuse_flag[out_index]);
is_reuse_memory = !node_op_desc->HasAttr(kL2FusionDynamicConvergeOp) &&
!node_op_desc->HasAttr(kOpNoReuseMem) && reuse_mem_flag && is_op_reuse_mem;
bool do_reuse = is_reuse_memory && !continuous && !reusable_blocks_[memory_type].empty();
if (do_reuse) {
auto stream_id = node_op_desc->GetStreamId();
for (auto it = reusable_blocks_[memory_type][stream_id].rbegin();
it != reusable_blocks_[memory_type][stream_id].rend(); ++it) {
MemoryBlock *reusable_block = *it;
if (!IsPostReuse(reusable_block)) {
reusable_block->reuse_mem_ = false;
GELOGI("Unreusable block.");
continue;
}
GE_IF_BOOL_EXEC(reusable_block->batch_label_ != batch_label, continue);
// A node can reuse blocks of the same stream and preorder streams
if (CanReuseBlock(continuous_life_begin_, *reusable_block, block_size)) {
reusable_block->AddNodeTypeIndex({n, mem_type, out_index, false, continuous_life_begin_},
real_size, no_align_size);
if (mem_type == kOutput) {
auto iter = anchor_to_symbol_.find(NodeIndexIO(n, out_index, kOut).ToString());
if (iter != anchor_to_symbol_.end()) {
reusable_block->AddSymbol(iter->second);
}
}
reusable_block->continuous_block_ = continuous;
reusable_blocks_[memory_type][stream_id].erase((++it).base());
return reusable_block;
}
}
}
}
auto block = new (std::nothrow) MemoryBlock(block_size, node_op_desc->GetStreamId(), is_reuse_memory, memory_type);
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
block == nullptr,
REPORT_INNER_ERROR("E19999", "new a memoryblock object failed. node_name:%s out_index:%u",
n->GetName().c_str(), out_index);
return nullptr,
"[New][Object]new MemoryBlock failed, node_name:%s out_index:%u", n->GetName().c_str(), out_index);
// Data and netoutput need zero copy block
block->is_zero_copy_ = IsZeroCopyBlock(n, continuous);
block->AddNodeTypeIndex({n, mem_type, out_index, false, continuous_life_begin_}, real_size, no_align_size);
block->stream_id_ = node_op_desc->GetStreamId();
block->continuous_block_ = continuous;
block->batch_label_ = batch_label;
if (mem_type == kOutput) {
auto iter = anchor_to_symbol_.find(NodeIndexIO(n, out_index, kOut).ToString());
if (iter != anchor_to_symbol_.end()) {
block->AddSymbol(iter->second);
}
}
memory_blocks_.emplace_back(block);
// cause memory_blocks_ may reduce when swap after,
// create blocks_store_ to assure blocks deleted finally
blocks_store_.emplace_back(block);
return block;
}
bool IsOutputIndexRef(const OpDescPtr &op_desc, uint32_t index) {
auto output_tensor = op_desc->GetOutputDescPtr(index);
bool dst_reuse_input = false;
(void)ge::TensorUtils::GetReuseInput(*output_tensor, dst_reuse_input);
if (dst_reuse_input) {
return true;
}
bool is_ref = false;
(void)ge::AttrUtils::GetBool(op_desc, ATTR_NAME_REFERENCE, is_ref);
if (is_ref) {
string output_name = op_desc->GetOutputNameByIndex(index);
for (const auto &input_name : op_desc->GetAllInputNames()) {
if (output_name == input_name) {
return true;;
}
}
}
return false;
}
void BlockMemAssigner::ContinuousOutRefCheck(bool &isAllOutputRef, bool &isOutputHasRef,
const NodePtr &n) {
const auto node_op_desc = n->GetOpDesc();
for (uint32_t index = 0; index < static_cast<uint32_t>(node_op_desc->GetOutputsSize()); index++) {
if (!IsOutputIndexRef(node_op_desc, index)) {
isAllOutputRef = false;
break;
} else {
zero_memory_list_.emplace_back(n, kOutput, index);
isOutputHasRef = true;
}
}
}
Status BlockMemAssigner::ApplyContinuousMemory(const NodePtr &n, const vector<int64_t> &ranges,
const bool is_op_reuse_mem) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
n == nullptr,
REPORT_INNER_ERROR("E19999", "Input parameter n(type:node_ptr) is null");
return INTERNAL_ERROR, "[check][param]Input parameter n(type:NodePtr) is null.");
auto node_op_desc = n->GetOpDesc();
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
node_op_desc == nullptr,
REPORT_INNER_ERROR("E19999", "Input parameter n(type:OpDescPtr) is null");
return INTERNAL_ERROR, "[Check][Param]Input parameter n(type:OpDescPtr) is null");
// continuous output support ref only when all output ref input
bool isAllOutputRef = true;
bool isOutputHasRef = false;
ContinuousOutRefCheck(isAllOutputRef, isOutputHasRef, n);
if (isAllOutputRef) {
GELOGI("continuous output node ref all input, skip continuous alloc, node_name:%s", n->GetName().c_str());
return SUCCESS;
}
if (!isAllOutputRef && isOutputHasRef) {
REPORT_INNER_ERROR("E19999", "continuous output node ref part input, not support now. node_name:%s",
n->GetName().c_str());
GELOGE(INTERNAL_ERROR, "[Check][OutRefStatus]continuous output node ref part input, not support, node_name:%s",
n->GetName().c_str());
return INTERNAL_ERROR;
}
MemoryBlock *block = nullptr;
int64_t total_size = 0;
int64_t memory_type = RT_MEMORY_HBM;
for (uint32_t index = 0; index < static_cast<uint32_t>(node_op_desc->GetOutputsSize()); index++) {
auto output_op_desc = node_op_desc->GetOutputDescPtr(index);
if (output_op_desc == nullptr) {
REPORT_INNER_ERROR("E19999", "get output_desc failed, node_name:%s, output_index:%u",
n->GetName().c_str(), index);
GELOGE(INTERNAL_ERROR, "[Get][OutputDesc]node_name:%s, output_index:%u", n->GetName().c_str(), index);
return INTERNAL_ERROR;
}
if (CheckIsZeroMemNodeType(n->GetType())) {
zero_memory_list_.emplace_back(n, kOutput, index);
continue;
}
int64_t size = 0;
if (ge::TensorUtils::GetSize(*output_op_desc, size) != SUCCESS) {
REPORT_CALL_ERROR("E19999", "get tensor_size failed, node_name:%s, output_index:%u",
n->GetName().c_str(), index);
GELOGE(INTERNAL_ERROR, "[Get][TensorSize]node_name:%s, output_index:%u", n->GetName().c_str(), index);
return INTERNAL_ERROR;
}
size_t align_size = static_cast<size_t>(size);
AlignMemOffset(align_size);
total_size += align_size;
// only apply total size in first block
if (index != 0) {
zero_memory_list_.emplace_back(n, kOutput, index);
} else {
NodeIndexIO node_index_io(n, index, kOut);
auto iter = anchor_to_symbol_.find(node_index_io.ToString());
if (iter != anchor_to_symbol_.end()) {
string symbol = iter->second;
if (symbol_to_mem_type_.find(symbol) != symbol_to_mem_type_.end()) {
memory_type = symbol_to_mem_type_[symbol];
GELOGD("Continuous out memory symbol is [%s], memory type is [%ld]", symbol.c_str(), memory_type);
}
}
}
}
if (total_size == 0) {
return SUCCESS;
}
auto block_size = GetBlockSize(total_size, ranges);
GELOGI("Node[%s] continuous out memory size[%ld] block size[%zu]", node_op_desc->GetName().c_str(),
total_size, block_size);
vector<bool> workspace_reuse_flag;
block = ApplyMemory(block_size, total_size, total_size, kOutput, n, 0, workspace_reuse_flag, is_op_reuse_mem, true,
memory_type);
if (block != nullptr) {
// hccl task need align header and tail
block->first_continuous_block_ = true;
block->last_continuous_block_ = true;
++(block->ref_count_);
} else {
REPORT_CALL_ERROR("E19999", "apply continuousMemory failed, node_name:%s, total_size:%ld",
n->GetName().c_str(), total_size);
GELOGE(INTERNAL_ERROR, "[Apply][ContinuousMemory]node_name:%s, total_size:%ld", n->GetName().c_str(), total_size);
return INTERNAL_ERROR;
}
return SUCCESS;
}
MemoryBlock *BlockMemAssigner::ApplyOutMemory(const NodePtr &n, uint32_t index, const vector<int64_t> &ranges,
const bool is_op_reuse_mem, const bool continuous) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
n == nullptr,
REPORT_INNER_ERROR("E19999", "Input parameter n(type:NodePtr) is null");
return nullptr, "[Check][Param]Input parameter n(type:NodePtr) is null");
auto node_op_desc = n->GetOpDesc();
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
node_op_desc == nullptr,
REPORT_INNER_ERROR("E19999", "Input parameter n(type:OpDescPtr) is null");
return nullptr, "[Check][Param]Input parameter n(type:OpDescPtr) is null");
MemoryBlock *block = nullptr;
NodeIndexIO node_index_io(n, index, kOut);
int64_t size = 0;
auto output_op_desc = node_op_desc->GetOutputDescPtr(index);
GE_IF_BOOL_EXEC(
output_op_desc == nullptr,
REPORT_INNER_ERROR("E19999", "get output_desc failed, node_name:%s, output_index:%u",
n->GetName().c_str(), index);
GELOGE(FAILED, "[Get][OutputDesc]node_name:%s, output_index:%u", n->GetName().c_str(), index);
return nullptr);
GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(*output_op_desc, size) != SUCCESS, GELOGI("Get size failed"));
size_t no_align_size = 0;
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
GetNoAlignSize(*node_op_desc, index, no_align_size) != SUCCESS,
REPORT_CALL_ERROR("E19999", "Get no align size failed, node_name:%s, output_index:%u",
n->GetName().c_str(), index);
return nullptr,
"[Get][TensorSize]Get no align size, node_name:%s, output_index:%u", n->GetName().c_str(), index);
std::string symbol;
bool reuse_input = false;
if (IsSymbolExist(node_index_io, symbol)) {
block = symbol_blocks_[symbol];
GE_IF_BOOL_EXEC(block == nullptr,
REPORT_INNER_ERROR("E19999", "get ref block failed, node_name:%s, symbol:%s",
node_op_desc->GetName().c_str(), node_index_io.ToString().c_str());
GELOGE(FAILED, "[Get][RefBlock]node_name:%s, symbol:%s",
node_op_desc->GetName().c_str(), node_index_io.ToString().c_str());
return nullptr);
// reduce old size
size_t align_size = block->Size();
AlignMemOffset(align_size);
theory_memory_size_ -= align_size;
auto block_size = GetBlockSize(size, ranges);
block->SetSize(block_size);
block->SetLifeTimeEnd(life_time_);
block->AddNodeTypeIndex({n, kOutput, index, true, continuous_life_begin_}, size, no_align_size);
block->ref_count_++;
reuse_input = true;
// add new size
align_size = block_size;
AlignMemOffset(align_size);
theory_memory_size_ += align_size;
} else {
// if ref input is variable, can not find symbol, must judge alone
if (IsOutputIndexRef(node_op_desc, index)) {
zero_memory_list_.emplace_back(n, kOutput, index, false);
GELOGI("ref mode skip out block assign. node_name: %s, index:%d", n->GetName().c_str(), index);
return nullptr;
}
int64_t max_size = size;
int64_t memory_type = RT_MEMORY_HBM;
auto iter1 = anchor_to_symbol_.find(node_index_io.ToString());
if (iter1 != anchor_to_symbol_.end()) {
auto iter2 = symbol_size_.find(iter1->second);
if (iter2 != symbol_size_.end()) {
max_size = iter2->second;
}
auto iter3 = symbol_to_mem_type_.find(iter1->second);
if (iter3 != symbol_to_mem_type_.end()) {
memory_type = iter3->second;
}
}
auto block_size = GetBlockSize(max_size, ranges);
vector<bool> workspace_reuse_flag;
block = ApplyMemory(block_size, size, no_align_size, kOutput, n, index,
workspace_reuse_flag, is_op_reuse_mem, continuous, memory_type);
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
block == nullptr,
REPORT_CALL_ERROR("E19999", "apply out Memory failed, node_name:%s, block_size:%ld, out_index:%u",
n->GetName().c_str(), block_size, index);
return nullptr,
"[Apply][Memory]node_name:%s, block_size:%ld, out_index:%u",
n->GetName().c_str(), block_size, index);
}
int out_count = 0;
GE_IF_BOOL_EXEC(
index >= n->GetAllOutDataAnchors().size(),
REPORT_INNER_ERROR("E19999", "out index:%u exceed out_size:%lu, node_name:%s",
index, n->GetAllOutDataAnchors().size(), n->GetName().c_str());
GELOGE(FAILED, "[Check][OutIndex]index:%u exceed out_size:%lu, node_name:%s",
index, n->GetAllOutDataAnchors().size(), n->GetName().c_str());
return nullptr);
auto out_data_anchor = n->GetOutDataAnchor(index);
GE_IF_BOOL_EXEC(
out_data_anchor == nullptr,
REPORT_INNER_ERROR("E19999", "out anchor is null, index:%u, node_name:%s", index, n->GetName().c_str());
GELOGE(FAILED, "[Check][OutAnchor]is null, index:%u, node_name:%s", index, n->GetName().c_str());
return nullptr);
for (const auto &in_anchor : out_data_anchor->GetPeerInDataAnchors()) {
auto owner_node = in_anchor->GetOwnerNode();
auto op_desc = owner_node->GetOpDesc();
GE_IF_BOOL_EXEC(op_desc == nullptr, continue);
Params *instance = Params::Instance();
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(instance == nullptr, return nullptr, "Params instance is nullptr.");
if (!((instance->GetTarget() == TARGET_TYPE_TINY) && (op_desc->GetType() == NETOUTPUT))) {
out_count++;
}
}
block->ref_count_ = (reuse_input && out_count != 0) ? (block->ref_count_ + out_count - 1)
: (block->ref_count_ + out_count);
return block;
}
bool IsOutputBlock(const ge::InDataAnchorPtr &in_data_anchor) {
auto peer_out_anchor = in_data_anchor->GetPeerOutAnchor();
GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, GELOGE(FAILED, "Peer out anchor is nullptr."); return false);
auto src = peer_out_anchor->GetOwnerNode();
int32_t index = peer_out_anchor->GetIdx();
auto iter = GetLocalOmgContext().out_nodes_map.find(src->GetName());
if (iter != GetLocalOmgContext().out_nodes_map.end()) {
for (auto id : iter->second) {
if (index == id) {
return true;
}
}
}
return false;
}
// atomic out memory will be reassigned
bool IsAtomicOutputMemory(const ge::NodePtr &node, uint32_t output_index, bool is_atomic,
bool out_node_set_continuous_input) {
auto op_desc = node->GetOpDesc();
if (op_desc == nullptr) {
return false;
}
vector<int64_t> atomic_output_index;
// If GetListInt fail, atomic_output_index is empty.
(void)ge::AttrUtils::GetListInt(op_desc, ATOMIC_ATTR_OUTPUT_INDEX, atomic_output_index);
if (!out_node_set_continuous_input && is_atomic) {
for (auto &index : atomic_output_index) {
if (static_cast<uint32_t>(index) == output_index) {
if (node->GetOwnerComputeGraph() != nullptr) {
string graph_name = node->GetOwnerComputeGraph()->GetName();
GELOGD("Atomic no assign %s name[%s] output[%ld] streamid[%ld].", graph_name.c_str(),
op_desc->GetName().c_str(), index, op_desc->GetStreamId());
}
return true;
}
}
}
return false;
}
bool IsKnownSubgraphData(const NodePtr &node) {
if (NodeUtils::IsDynamicShape(node)) {
return false;
}
return node->GetOpDesc()->HasAttr(ATTR_NAME_PARENT_NODE_INDEX);
}
void BlockMemAssigner::ReleaseMemory(MemoryBlock *to_release, vector<MemoryBlock *> &reusable_memory,
bool same_stream) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(to_release == nullptr, return, "Input parameter to_release is null.");
GE_CHK_TRUE_EXEC_INFO(to_release->ref_count_ <= 0, return, "Release memory");
GE_CHK_TRUE_EXEC_INFO(!to_release->reuse_mem_, return, "doesn't reuse memory");
--to_release->ref_count_;
if (!same_stream) {
to_release->same_stream_ = false;
}
if (to_release->ref_count_ == 0) {
if (to_release->reuse_mem_ && !to_release->RealSizeList().empty()) {
if (to_release->batch_label_.empty() || (to_release->batch_label_ == max_batch_label_)) {
size_t align_size = to_release->RealSizeList().back();
AlignMemOffset(align_size);
theory_memory_size_ -= align_size;
}
}
if (to_release->same_stream_) {
to_release->SetLifeTimeEnd(life_time_);
reusable_memory.emplace_back(to_release);
}
}
}
void BlockMemAssigner::ReleaseMemorys(const vector<MemoryBlock *> &to_releases,
vector<MemoryBlock *> &reusable_memory) {
for (auto mem_block : to_releases) {
ReleaseMemory(mem_block, reusable_memory);
}
}
void BlockMemAssigner::ReleaseInputNodeOutMemory(const unordered_map<string, vector<MemoryBlock *>> &node_out_blocks,
vector<MemoryBlock *> &reusable_memory, NodePtr &node) {
for (const auto &in_anchor : node->GetAllInDataAnchors()) {
if ((in_anchor->GetPeerOutAnchor() == nullptr) ||
(in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetOpDesc() == nullptr) || (node->GetOpDesc() == nullptr)) {
return;
}
GE_IF_BOOL_EXEC(IsOutputBlock(in_anchor), continue);
auto node_name = in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetName();
GE_IF_BOOL_EXEC((in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetType() == CONSTANT) ||
(in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetType() == FASTRCNNPREDICTIONS) ||
(in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetType() == CONSTANTOP),
continue);
auto it = node_out_blocks.find(node_name);
if (it == node_out_blocks.end()) {
continue;
}
for (auto block : it->second) {
const vector<NodeTypeIndex> &node_type_indexs = block->NodeTypeIndexList();
if (node_type_indexs.empty()) {
continue;
}
GELOGD("node_type_indexs: %d, %s", node_type_indexs.back().index,
node_type_indexs.back().node->GetName().c_str());
bool is_block_matched = false;
for (auto &node_type_index : node_type_indexs) {
is_block_matched = (node_type_index.node == in_anchor->GetPeerOutAnchor()->GetOwnerNode()) &&
(node_type_index.index == static_cast<uint32_t>(in_anchor->GetPeerOutAnchor()->GetIdx()));
if (is_block_matched) {
GELOGI("Block of peer out is matched. Peer node:%s, output index:%u, "
"current node:%s, input index:%d, block ref_count:%d.",
node_type_index.node->GetName().c_str(), node_type_index.index,
node->GetName().c_str(), in_anchor->GetIdx(), block->ref_count_);
break;
}
}
if (is_block_matched) {
ReleaseMemory(block, reusable_memory, (node->GetOpDesc()->GetStreamId() == block->stream_id_));
if (block->ref_count_ == 0 && block->same_stream_) {
SetLastUsedInputMemAttr(node, in_anchor->GetIdx());
}
break;
}
}
}
}
void SplitStringByComma(const string &str, vector<string> &sub_str_vec) {
std::string tmp_string = str + ",";
std::string::size_type start_pos = 0;
std::string::size_type cur_pos = tmp_string.find(',', 0);
while (cur_pos != std::string::npos) {
std::string sub_str = tmp_string.substr(start_pos, cur_pos - start_pos);
if (!sub_str.empty()) {
vector<string>::iterator ret = std::find(sub_str_vec.begin(), sub_str_vec.end(), sub_str);
if (ret == sub_str_vec.end()) {
sub_str_vec.push_back(sub_str);
}
}
start_pos = cur_pos + 1;
cur_pos = tmp_string.find(',', start_pos);
}
}
void CheckAndGetOpReuseEnv(const string &env, vector<string> &env_vec, bool &op_reuse_env_valid) {
string env_str;
env_str = string(env);
if (env_str.size() > kReuseMaxCharNum) {
GELOGE(FAILED, "The OP_NO_REUSE_MEM has more than %d characters.", kReuseMaxCharNum);
return;
}
SplitStringByComma(env_str, env_vec);
if (env_vec.size() > kReuseMaxOpNum) {
GELOGE(FAILED, "The OP_NO_REUSE_MEM has more than %d nodes.", kReuseMaxOpNum);
return;
}
op_reuse_env_valid = true;
return;
}
void BlockMemAssigner::CheckAndReleaseSuspendedBlock(const NodePtr &node, uint32_t idx, MemoryBlock *block) {
if (node == nullptr || node->GetOpDesc() == nullptr || block == nullptr) {
return;
}
int64_t stream_id = node->GetOpDesc()->GetStreamId();
auto out_data_anchor = node->GetOutDataAnchor(static_cast<int>(idx));
bool is_suspended = (out_data_anchor != nullptr) && (out_data_anchor->GetPeerInDataNodesSize() == 0);
if (is_suspended) {
block->ref_count_ = (block->ref_count_ != 0) ? (block->ref_count_) : (1);
stream_workspace_blocks_[block->memory_type_][stream_id].emplace_back(block);
GELOGI("The output is suspended, and will be released in allocation of next node. Name:%s, index:%u, "
"size:%zu, ref_count:%d.", node->GetName().c_str(), idx, block->Size(), block->ref_count_);
}
}
Status BlockMemAssigner::AssignOutputMemoryWithReuse(const NodePtr &node, vector<int64_t> &ranges) {
auto op_desc = node->GetOpDesc();
int64_t stream_id = op_desc->GetStreamId();
vector<int64_t> memorys_type;
bool has_mem_type_attr = ge::AttrUtils::GetListInt(op_desc, ATTR_NAME_OUTPUT_MEM_TYPE_LIST, memorys_type);
GELOGD("Assign memory node[%s], output size[%zu], output memory type size[%zu]", op_desc->GetName().c_str(),
op_desc->GetOutputsSize(), memorys_type.size());
if (has_mem_type_attr && (memorys_type.size() != op_desc->GetOutputsSize())) {
REPORT_INNER_ERROR("E19999", "Attr[%s] size:%zu not equal to node output size:%zu, node_name:%s",
ATTR_NAME_OUTPUT_MEM_TYPE_LIST.c_str(), memorys_type.size(),
op_desc->GetOutputsSize(), op_desc->GetName().c_str());
GELOGE(
INTERNAL_ERROR,
"[Check][MemTypeAttr]Attr %s size:%zu not equal to node output size:%zu, node_name:%s",
ATTR_NAME_OUTPUT_MEM_TYPE_LIST.c_str(), memorys_type.size(),
op_desc->GetOutputsSize(), op_desc->GetName().c_str());
return INTERNAL_ERROR;
}
is_op_reuse_mem_ = true;
continuous_life_begin_ = 0;
if (op_reuse_env_valid_ == true) {
vector<string>::iterator it_name =
std::find(op_no_reuse_mem_vec_.begin(), op_no_reuse_mem_vec_.end(), op_desc->GetName());
vector<string>::iterator it_type =
std::find(op_no_reuse_mem_vec_.begin(), op_no_reuse_mem_vec_.end(), op_desc->GetType());
GE_IF_BOOL_EXEC(it_name != op_no_reuse_mem_vec_.end() || it_type != op_no_reuse_mem_vec_.end(),
is_op_reuse_mem_ = false;);
}
bool is_atomic = false;
// If GetBool fail, is_atomic is false.
(void)ge::AttrUtils::GetBool(op_desc, ATOMIC_ATTR_IS_ATOMIC_NODE, is_atomic);
bool is_buffer_pool_mem_supported = (op_desc->HasAttr(ATTR_NAME_BUFFER_POOL_ID)) &&
(op_desc->HasAttr(ATTR_NAME_BUFFER_POOL_SIZE)) && (!root_unknown_shape_flag_);
// Allocate memory for the current node and release node memory of the same size in the workspace
GE_IF_BOOL_EXEC(ge_disable_reuse_mem_env_ != "1",
for (auto iter = stream_workspace_blocks_.begin(); iter != stream_workspace_blocks_.end();
++iter) { ReleaseMemorys(iter->second[stream_id], reusable_blocks_[iter->first][stream_id]);
iter->second[stream_id].clear();});
bool need_apply_continuous_memory = IsContinuousOutput(node) && (!is_buffer_pool_mem_supported);
if (need_apply_continuous_memory) {
return ApplyContinuousMemory(node, ranges, is_op_reuse_mem_);
}
for (uint32_t i = 0; i < static_cast<uint32_t>(op_desc->GetOutputsSize()); i++) {
int64_t size = 0;
auto output_op_desc = op_desc->GetOutputDescPtr(i);
if (output_op_desc != nullptr) {
GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(*output_op_desc, size) != SUCCESS, GELOGI("Get size failed"));
}
// fusion: other type's size not means malloc HBM memory
bool l1_flag = has_mem_type_attr && memorys_type[i] == RT_MEMORY_L1;
if (l1_flag) {
GELOGI("fusion: node[%s], output[%s], output memory type [%ld]",
op_desc->GetName().c_str(), op_desc->GetOutputNameByIndex(i).c_str(), memorys_type[i]);
size = 0;
}
int32_t calc_type = 0;
bool ret = ge::AttrUtils::GetInt(output_op_desc, ATTR_NAME_MEMORY_SIZE_CALC_TYPE, calc_type);
GE_IF_BOOL_EXEC((ret && (calc_type == static_cast<int32_t>(ge::MemorySizeCalcType::ALWAYS_EMPTY))), size = 0;);
std::string peer_name;
uint32_t peer_input_index = 0;
bool out_node_set_continuous_input = false;
bool reset_zero_copy_flag = false;
bool no_need_assign_memory = ((size == 0) || CheckIsZeroMemNodeType(node->GetType()));
if (!no_need_assign_memory) {
out_node_set_continuous_input =
IsOutNodeSetContinuousInput(node, i, peer_name, peer_input_index,
no_need_assign_memory, reset_zero_copy_flag);
GE_IF_BOOL_EXEC(!no_need_assign_memory,
no_need_assign_memory = IsAtomicOutputMemory(node, i, is_atomic, out_node_set_continuous_input););
}
no_need_assign_memory = (no_need_assign_memory || IsKnownSubgraphData(node) || is_buffer_pool_mem_supported);
if (no_need_assign_memory) {
zero_memory_list_.emplace_back(node, kOutput, i, false);
continue;
}
// atomic can't be reused
bool need_change = is_op_reuse_mem_ && is_atomic;
if (need_change) {
is_op_reuse_mem_ = false;
}
MemoryBlock *mem_block = ApplyOutMemory(node, i, ranges, is_op_reuse_mem_, out_node_set_continuous_input);
if (mem_block != nullptr) {
GE_IF_BOOL_EXEC(reset_zero_copy_flag,
mem_block->is_zero_copy_ = false;
GELOGI("Node[%s] output[%u] need assign memory before reassign.", op_desc->GetName().c_str(), i););
node_out_blocks_[node->GetName()].emplace_back(mem_block);
if (out_node_set_continuous_input) {
node_continuous_input_blocks_[peer_name][peer_input_index] = mem_block;
}
NodeIndexIO node_index_io(node, i, kOut);
auto iter = anchor_to_symbol_.find(node_index_io.ToString());
if (iter == anchor_to_symbol_.end()) {
continue;
}
symbol_blocks_[iter->second] = mem_block;
// The output is suspended, and will be released in allocation of next node.
CheckAndReleaseSuspendedBlock(node, i, mem_block);
}
}
return SUCCESS;
}
///
/// @ingroup domi
/// @brief traverse all nodes outputs and workspace in need, apply memory block considering memory reuse
/// @param [in/out] ranges memory size provided
/// @return Status result
///
void BlockMemAssigner::AssignMemoryWithReuse(vector<int64_t> &ranges) {
(void)ge::GetContext().GetOption(OPTION_EXEC_DISABLE_REUSED_MEMORY, ge_disable_reuse_mem_env_);
GEEVENT("Reuse memory %s", ge_disable_reuse_mem_env_ == "1" ? "close" : "open");
string op_no_reuse_mem_str;
const char *op_no_reuse_mem = std::getenv(OP_NO_REUSE_MEM);
GE_IF_BOOL_EXEC(op_no_reuse_mem != nullptr, op_no_reuse_mem_str = string(op_no_reuse_mem);
CheckAndGetOpReuseEnv(op_no_reuse_mem_str, op_no_reuse_mem_vec_, op_reuse_env_valid_););
auto root_graph = GraphUtils::FindRootGraph(compute_graph_);
if (root_graph == nullptr) {
GELOGE(INTERNAL_ERROR, "[Check][RootGraph]Root graph is nullptr, graph:%s.", compute_graph_->GetName().c_str());
REPORT_INNER_ERROR("E19999", "Root graph is nullptr, graph:%s.", compute_graph_->GetName().c_str());
return;
}
root_unknown_shape_flag_ = root_graph->GetGraphUnknownFlag();
for (NodePtr &n : compute_graph_->GetAllNodes()) {
auto node_op_desc = n->GetOpDesc();
GE_IF_BOOL_EXEC(node_op_desc == nullptr, continue);
life_time_ = node_op_desc->GetId();
int64_t stream_id = node_op_desc->GetStreamId();
if (AssignOutputMemoryWithReuse(n, ranges) != SUCCESS) {
return;
}
vector<int64_t> temp;
int64_t tatal_size = 0;
GetNodeWorkSpaceSize(n, temp, tatal_size);
vector<int64_t> workspace_bytes;
vector<int64_t> tvm_workspace_memory_type;
bool has_tvm_workspace_mem_type_attr =
ge::AttrUtils::GetListInt(node_op_desc, TVM_ATTR_NAME_WORKSPACE_TYPE, tvm_workspace_memory_type);
vector<bool> workspace_reuse_flag;
GE_IF_BOOL_EXEC(!ge::AttrUtils::GetListBool(node_op_desc, kAttrNameWorkspaceReuseFlag, workspace_reuse_flag),
GELOGD("OP %s get workspace_reuse_flag attr failed", node_op_desc->GetName().c_str()));
GELOGD("Assign memory node[%s], size [temp:%zu, memory type size:%zu]", node_op_desc->GetName().c_str(),
temp.size(), tvm_workspace_memory_type.size());
if (has_tvm_workspace_mem_type_attr && (temp.size() != tvm_workspace_memory_type.size())) {
REPORT_INNER_ERROR("E19999", "Attr[%s]size:%zu is not equal to workspace size:%zu, node_name:%s",
TVM_ATTR_NAME_WORKSPACE_TYPE.c_str(), tvm_workspace_memory_type.size(),
temp.size(), n->GetName().c_str());
GELOGE(INTERNAL_ERROR, "[Check][Attr]Attr %s size:%zu is not equal to workspace size:%zu, node_name:%s",
TVM_ATTR_NAME_WORKSPACE_TYPE.c_str(), tvm_workspace_memory_type.size(),
temp.size(), n->GetName().c_str());
return;
}
for (size_t i = 0; i < temp.size(); i++) {
// fusion: other type's size not means malloc HBM memory
bool workspace_skip_flag = false;
if (has_tvm_workspace_mem_type_attr && tvm_workspace_memory_type[i] == RT_MEMORY_L1) {
GELOGI(
"fusion:node[%s]workspace index[%zu] is not hbm type, add to zero_memory_list, workspace memory type [%ld]",
node_op_desc->GetName().c_str(), i, tvm_workspace_memory_type[i]);
workspace_skip_flag = true;
}
if (temp[i] == 0 || workspace_skip_flag) {
zero_memory_list_.emplace_back(n, kWorkspace, static_cast<uint32_t>(i), false);
continue;
}
int64_t memory_type = RT_MEMORY_HBM;
if (!GetWorkSpaceMemoryType(n, i, memory_type)) {
GELOGW("Get workspace memory type failed.");
return;
}
MemoryBlock *mem_block = ApplyMemory(GetBlockSize(static_cast<size_t>(temp[i]), ranges),
static_cast<size_t>(temp[i]), static_cast<size_t>(temp[i]),
kWorkspace, n, static_cast<uint32_t>(i), workspace_reuse_flag,
is_op_reuse_mem_, false, memory_type);
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(mem_block == nullptr, continue, "failed to apply memory block.");
++(mem_block->ref_count_);
CheckWorkspaceReuse(workspace_reuse_flag, i, stream_id, mem_block, memory_type);
}
for (auto it = reusable_blocks_.begin(); it != reusable_blocks_.end(); ++it) {
ReleaseInputNodeOutMemory(node_out_blocks_, it->second[stream_id], n);
}
}
GELOGD("Assigned memory blocks:");
for (auto mem_block : memory_blocks_) {
GELOGD("%s", mem_block->String().c_str());
(void)mem_block; // Fix warning
}
GE_IF_BOOL_EXEC(!(ge_disable_reuse_mem_env_ == "1"), ReuseBlocksByLifeTime(ranges.size()));
AssignContinuousBlocks();
ResizeMemoryBlocks();
GELOGD("Memory blocks after resize:");
for (auto mem_block : memory_blocks_) {
GELOGD("%s", mem_block->String().c_str());
(void)mem_block; // Fix warning
}
}
void BlockMemAssigner::CheckWorkspaceReuse(const vector<bool> &workspace_reuse_flag, uint32_t index, int64_t stream_id,
MemoryBlock *mem_block, int64_t memory_type) {
bool reuse_mem_flag =
((workspace_reuse_flag.size() > index) && (workspace_reuse_flag[index] == false)) ? false : true;
if (reuse_mem_flag) {
stream_workspace_blocks_[memory_type][stream_id].emplace_back(mem_block);
}
}
void BlockMemAssigner::GetNodeWorkSpaceSize(const NodePtr &node, vector<int64_t> &workspace_memory,
int64_t &total_size) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(node->GetOpDesc() == nullptr, return, "Op desc is null.");
vector<int64_t> workspace_byte_nums = node->GetOpDesc()->GetWorkspaceBytes();
GELOGD("node[%s] size:%zu", node->GetOpDesc()->GetName().c_str(), workspace_byte_nums.size());
for (int64_t byte_size : workspace_byte_nums) {
workspace_memory.emplace_back(byte_size);
total_size += byte_size;
GELOGD("push back size:%ld", byte_size);
}
}
// asending order
static bool CompareBlockIndex(MemoryBlock *left, MemoryBlock *right) {
if (left == nullptr || right == nullptr) {
return false;
}
if (left->input_index_ < right->input_index_) {
return true;
}
return false;
}
///
/// @ingroup domi
/// @brief order blocks by continuous input index
/// @param [in] blocks need be processed
/// @param [in] input blocks need continuous
/// @param [out] blocks after continuous order
/// @param [in/out] blocks ordered
/// @param [in] input or output
///
void ReAssignContinuousBlocks(const std::vector<MemoryBlock *> &org_blocks,
const std::map<MemoryBlock *, uint32_t> block_map,
std::vector<MemoryBlock *> &dest_blocks, std::vector<MemoryBlock *> &continuous_blocks,
const std::string &type) {
for (auto &memory_block : org_blocks) {
if (memory_block == nullptr || memory_block->deleted_block_) {
continue;
}
if (block_map.find(memory_block) != block_map.end()) {
continue;
}
dest_blocks.emplace_back(memory_block);
}
// add continuous block
std::sort(continuous_blocks.begin(), continuous_blocks.end(), CompareBlockIndex);
size_t count = 0;
for (auto &memory_block : continuous_blocks) {
GE_IF_BOOL_EXEC(memory_block == nullptr, continue);
GELOGI("Block continuous %s index:%d", type.c_str(), memory_block->input_index_);
count++;
if (count == 1) {
memory_block->first_continuous_block_ = true;
}
if (count == continuous_blocks.size()) {
memory_block->last_continuous_block_ = true;
}
dest_blocks.emplace_back(memory_block);
}
}
void BlockMemAssigner::AssignContinuousBlocks() {
for (auto &block_map : node_continuous_input_blocks_) {
std::vector<MemoryBlock *> dest_memory_blocks;
std::map<MemoryBlock *, uint32_t> continuous_block_map;
std::vector<MemoryBlock *> continuous_blocks;
auto it = node_continuous_input_counts_.find(block_map.first);
GE_IF_BOOL_EXEC(it == node_continuous_input_counts_.end(), continue);
GELOGI("Node:%s continuous input block count:%zu input count:%u", block_map.first.c_str(), block_map.second.size(),
it->second);
GE_IF_BOOL_EXEC(it->second != block_map.second.size(), continue);
for (auto &it : block_map.second) {
if (it.second != nullptr) {
continuous_block_map[it.second] = it.first;
it.second->input_index_ = it.first;
continuous_blocks.emplace_back(it.second);
}
}
if (continuous_block_map.size() != continuous_blocks.size()) {
GELOGW("Node:%s continuous input map size:%zu vector size:%zu", block_map.first.c_str(),
continuous_block_map.size(), continuous_blocks.size());
continue;
}
ReAssignContinuousBlocks(memory_blocks_, continuous_block_map, dest_memory_blocks, continuous_blocks, "input");
memory_blocks_.swap(dest_memory_blocks);
}
}
void BlockMemAssigner::ReuseBlocksByLifeTime(size_t range_size) {
// 1 means block size is same so no need to do this
if (range_size <= 1) {
return;
}
for (size_t i = 0; i < memory_blocks_.size(); ++i) {
auto parent = memory_blocks_[i];
if (parent == nullptr || parent->deleted_block_ || parent->continuous_block_) {
continue;
}
if (parent->reuse_mem_ && !IsPostReuse(parent)) {
parent->reuse_mem_ = false;
}
for (size_t j = i + 1; j < memory_blocks_.size(); ++j) {
auto child = memory_blocks_[j];
if (child == nullptr) {
continue;
}
// If node is before atomic_addr_clean node, the continus memory can't be reused.
if (!parent->NodeTypeIndexList().empty() && child->continuous_block_) {
auto node = parent->NodeTypeIndexList()[0].node;
if (node == nullptr || node->GetOpDesc() == nullptr || (node->GetOpDesc()->GetId() < GetAtomicAddrCleanId())) {
continue;
}
}
parent->AddLifeReuseBlock(child, total_node_depend_stream_life_);
}
}
}
void AddBlockMemOffset(size_t &mem_offset, size_t &p2p_mem_offset, MemoryBlock &block) {
if (block.memory_type_ == RT_MEMORY_HBM) {
if (block.first_continuous_block_) {
mem_offset += MEM_ALIGN_SIZE;
}
block.Resize();
block.SetHeadOffset(mem_offset);
mem_offset += block.Size();
block.SetTailOffset(mem_offset - 1);
} else if (block.memory_type_ == RT_MEMORY_P2P_DDR) {
if (block.first_continuous_block_) {
p2p_mem_offset += MEM_ALIGN_SIZE;
}
block.Resize();
block.SetHeadOffset(p2p_mem_offset);
p2p_mem_offset += block.Size();
block.SetTailOffset(p2p_mem_offset - 1);
}
}
bool DynamicBatchBlockReuse(MemoryBlock &block) {
return (block.IsSameBatchLabel() && block.reuse_mem_);
}
///
/// @ingroup domi_omg
/// @brief get max batch memory size, others reuse this block memory
/// @param [in&out] memory_blocks_ memory block, after calculating offset
/// |-dynamic batch block batch1|
/// |-dynamic batch block batch2----|
/// |-dynamic batch block batch3--|
///
void BlockMemAssigner::ResizeDynamicBatchBlocks() {
std::map<std::string, std::vector<MemoryBlock *>> dynamic_batch_blocks;
for (auto block : memory_blocks_) {
if (block == nullptr) {
continue;
}
// when memory is not reuseable, it can't be reused by different branch
if (DynamicBatchBlockReuse(*block)) {
dynamic_batch_blocks[block->batch_label_].emplace_back(block);
}
}
size_t max_mem_offset = mem_offset_;
size_t max_p2p_mem_offset = p2p_mem_offset_;
for (auto &batch_blocks : dynamic_batch_blocks) {
size_t mem_offset = mem_offset_;
size_t p2p_mem_offset = p2p_mem_offset_;
for (auto block : batch_blocks.second) {
if (block == nullptr || block->deleted_block_ || block->is_zero_copy_) {
continue;
}
AddBlockMemOffset(mem_offset, p2p_mem_offset, *block);
}
if (mem_offset > max_mem_offset) {
max_mem_offset = mem_offset;
}
if (p2p_mem_offset > max_p2p_mem_offset) {
max_p2p_mem_offset = p2p_mem_offset;
}
GELOGI("Batch[%s] offset[%zu] p2p_offset[%zu]", batch_blocks.first.c_str(), mem_offset, p2p_mem_offset);
}
mem_offset_ = max_mem_offset;
p2p_mem_offset_ = max_p2p_mem_offset;
}
///
/// @ingroup domi_omg
/// @brief traverse memory size, resize, calculate offset
/// @param [in&out] memory_blocks_ memory block, after calculating offset
/// |-not dynamic batch block-||-dynamic batch block batch1| |-zero copy block-|
/// |-not dynamic batch block-||-dynamic batch block batch2----||-zero copy block-|
/// |-not dynamic batch block-||-dynamic batch block batch3--| |-zero copy block-|
///
void BlockMemAssigner::ResizeMemoryBlocks() {
for (auto &memory_block : memory_blocks_) {
if (memory_block == nullptr || memory_block->deleted_block_ || memory_block->is_zero_copy_
|| DynamicBatchBlockReuse(*memory_block)) {
continue;
}
AddBlockMemOffset(mem_offset_, p2p_mem_offset_, *memory_block);
}
ResizeDynamicBatchBlocks();
GELOGI("mem_offset_ exclude zero_copy_memory is %zu, p2p_mem_offset_ exclude zero_copy_memory is %zu,"
"theory_min_memory_size %zu", mem_offset_, p2p_mem_offset_, theory_min_memory_size_);
}
///
/// @ingroup domi
/// @brief given NodeTypeIndex, set offset in Op's OpDef
/// @param [in&out] node_type_index <node, memory type, id>
/// @param [in] offset offset to be set
/// @param [in] size memory size
/// @param [in] real_size memory size in need
/// @return Status result
///
void SetOffsetSize(const NodeTypeIndex &node_type, const MemoryBlock *block,
size_t real_size, size_t no_align_size, int32_t child_block_level) {
ge::OpDescPtr op_desc = node_type.node->GetOpDesc();
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(op_desc == nullptr, return, "op_desc is null.");
string graph_name = node_type.node->GetOwnerComputeGraph()->GetName();
vector<int64_t> memorys_type;
int64_t offset = block->HeadOffset();
size_t end = node_type.life_time_end;
bool has_mem_type_attr = ge::AttrUtils::GetListInt(op_desc, ATTR_NAME_OUTPUT_MEM_TYPE_LIST, memorys_type);
if (node_type.mem_type == kOutput) {
vector<int64_t> output_list = op_desc->GetOutputOffset();
for (auto i = static_cast<uint32_t>(output_list.size()); i < node_type.index + 1; i++) {
output_list.emplace_back(kInvalidOffset);
}
if (output_list.empty()) {
GELOGW("Empty output");
return;
}
static const set<string> kSetOffsetTypes = { DATA_TYPE, AIPP_DATA_TYPE, MULTISHAPE, NETOUTPUT };
if ((kSetOffsetTypes.count(op_desc->GetType()) > 0) && !IsKnownSubgraphData(node_type.node)) {
if ((output_list[node_type.index] == kInvalidOffset) || (output_list[node_type.index] < offset)) {
output_list.at(node_type.index) = offset;
}
} else {
// fusion: keep the original other type offset value from op_desc
bool set_out_offset = (!has_mem_type_attr) ||
(memorys_type.size() > node_type.index && memorys_type[node_type.index] != RT_MEMORY_L1);
if (set_out_offset) {
output_list.at(node_type.index) = offset;
}
}
op_desc->SetOutputOffset(output_list);
} else if (node_type.mem_type == kWorkspace) {
vector<int64_t> workspace_list;
workspace_list = op_desc->GetWorkspace();
for (auto i = static_cast<uint32_t>(workspace_list.size()); i < node_type.index + 1; i++) {
workspace_list.emplace_back(kInvalidOffset);
}
vector<int64_t> workspace_mem_type;
bool has_workspace_mem_type = ge::AttrUtils::GetListInt(op_desc, TVM_ATTR_NAME_WORKSPACE_TYPE, workspace_mem_type);
// fusion: keep the original other type offset value from op_desc
bool set_workspace_offset = (!has_workspace_mem_type) ||
(workspace_mem_type.size() > node_type.index && workspace_mem_type[node_type.index] != RT_MEMORY_L1);
if (set_workspace_offset) {
workspace_list.at(node_type.index) = offset;
}
op_desc->SetWorkspace(workspace_list);
}
GELOGI("[IMAS]Set %s name[%s] optype[%s] %s[%u] offset to [%ld] streamid[%ld] memtype[%ld] size[%zu] realsize[%zu] "
"noalignsize[%zu] life time begin[%s] life time end[%zu] child[%d:%d:%d:%d:%d] isref[%d] batch[%s]",
graph_name.c_str(), op_desc->GetName().c_str(), node_type.node->GetType().c_str(),
node_type.GetMemType().c_str(), node_type.index, offset, op_desc->GetStreamId(),block->memory_type_,
block->Size(), real_size, no_align_size, node_type.GetLifeBeginDesc().c_str(), end, child_block_level,
block->reuse_mem_, block->continuous_block_, block->is_zero_copy_, block->same_stream_, node_type.ref_input,
block->batch_label_.c_str());
}
void SetBlockOpMemOffset(MemoryBlock *block, int32_t child_block_level) {
if (block == nullptr) {
return;
}
size_t index = 0;
size_t real_size = 0;
size_t no_align_size = 0;
auto real_size_list_size = block->RealSizeList().size();
for (const NodeTypeIndex &node_type_index : block->NodeTypeIndexList()) {
if (index < real_size_list_size) {
real_size = block->RealSizeList()[index];
no_align_size = block->NoAlignSizeList()[index];
}
SetOffsetSize(node_type_index, block, real_size, no_align_size, child_block_level);
index++;
}
child_block_level++;
for (MemoryBlock *child_block : block->ChildBlockList()) {
SetBlockOpMemOffset(child_block, child_block_level);
}
}
void BlockMemAssigner::SetOpMemOffset(bool is_zero_copy) {
for (MemoryBlock *memory_block : memory_blocks_) {
if (memory_block == nullptr || memory_block->deleted_block_) {
continue;
}
if ((is_zero_copy && !memory_block->is_zero_copy_) || (!is_zero_copy && memory_block->is_zero_copy_)) {
continue;
}
SetBlockOpMemOffset(memory_block, 0);
}
if (!is_zero_copy) {
for (const NodeTypeIndex &node_type_index : zero_memory_list_) {
MemoryBlock block(0, 0);
SetOffsetSize(node_type_index, &block, 0, 0, 0);
}
}
}
Status BlockMemAssigner::Assign() {
vector<int64_t> ranges;
if (GetMemoryRanges(ranges) != SUCCESS) {
GELOGE(FAILED, "[Get][MemoryRanges] Fail!");
return FAILED;
}
GE_IF_BOOL_EXEC(ranges.empty(), return SUCCESS);
AssignMemoryWithReuse(ranges);
SetOpMemOffset(false);
return SUCCESS;
}
bool BlockMemAssigner::CheckIsZeroMemNodeType(const string &node_type) const {
return (node_type == VARIABLE) || (node_type == CONSTANT) || (node_type == MULTISHAPE) ||
(node_type == CONSTANTOP) || (node_type == ASSIGNADD) || (node_type == ASSIGNSUB) ||
(node_type == ASSIGN) || (node_type == HVDWAIT);
}
bool BlockMemAssigner::GetWorkSpaceMemoryType(const NodePtr &node, size_t index, int64_t &memory_type) {
memory_type = RT_MEMORY_HBM;
vector<int64_t> workspace_memory_type;
auto op_desc = node->GetOpDesc();
bool has_workspace_mem_type_attr =
ge::AttrUtils::GetListInt(op_desc, TVM_ATTR_NAME_WORKSPACE_TYPE, workspace_memory_type);
if (has_workspace_mem_type_attr && (workspace_memory_type.size() <= index)) {
REPORT_INNER_ERROR("E19999", "get workspace mem_type failed, "
"index %zu invalid, bigger than attr %s size:%zu, node_name:%s",
index, TVM_ATTR_NAME_WORKSPACE_TYPE.c_str(),
workspace_memory_type.size(), node->GetName().c_str());
GELOGE(INTERNAL_ERROR, "[Get][WorkspaceMemType]index %zu invalid, bigger than attr %s size:%zu, node_name:%s",
index, TVM_ATTR_NAME_WORKSPACE_TYPE.c_str(), workspace_memory_type.size(), node->GetName().c_str());
return false;
}
memory_type = has_workspace_mem_type_attr ? workspace_memory_type[index] : RT_MEMORY_HBM;
return true;
}
} // namespace ge