You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
12 KiB
296 lines
12 KiB
/**
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "host_kernels/reduce_prod_kernel.h"
|
|
|
|
#include <memory>
|
|
#include <set>
|
|
|
|
#include "common/math/math_util.h"
|
|
#include "common/op/ge_op_utils.h"
|
|
#include "common/types.h"
|
|
#include "framework/common/debug/ge_log.h"
|
|
#include "framework/common/ge_inner_error_codes.h"
|
|
#include "host_kernels/kernel_utils.h"
|
|
#include "graph/utils/type_utils.h"
|
|
#include "inc/kernel_factory.h"
|
|
|
|
namespace ge {
|
|
namespace {
|
|
const size_t kReduceProdDataIndex = 0;
|
|
const size_t kReduceProdAxisIndex = 1;
|
|
const size_t kReduceProdMaxAxisRank = 1;
|
|
const size_t kReduceProdInputOnlyData = 1;
|
|
const size_t kReduceProdInputSize = 2;
|
|
const std::set<DataType> kReduceProdSupportedType = {DT_INT32};
|
|
} // namespace
|
|
|
|
Status ReduceProdKernel::ReduceProdCheck(const ge::OpDescPtr &op_desc_ptr,
|
|
const std::vector<ge::ConstGeTensorPtr> &input) const {
|
|
if (op_desc_ptr == nullptr) {
|
|
GELOGW("Input opdesc is nullptr.");
|
|
return PARAM_INVALID;
|
|
}
|
|
if (input.size() != kReduceProdInputSize) {
|
|
if (input.size() == kReduceProdInputOnlyData) {
|
|
// Input only data, which means calculate product for all elements in data_tensor.
|
|
GELOGI("ReduceProd node input size is 1, which does not have param axis, node name %s",
|
|
op_desc_ptr->GetName().c_str());
|
|
return NOT_CHANGED;
|
|
}
|
|
GELOGW("Unexpected ReduceProd node, node input size: %zu, node name: %s", input.size(),
|
|
op_desc_ptr->GetName().c_str());
|
|
return PARAM_INVALID;
|
|
}
|
|
ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
|
|
ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex);
|
|
GE_CHECK_NOTNULL(data_tensor);
|
|
GE_CHECK_NOTNULL(axis_tensor);
|
|
if (axis_tensor->GetTensorDesc().GetShape().GetDimNum() > kReduceProdMaxAxisRank) {
|
|
GELOGW("Axis must be at most rank 1, node: %s", op_desc_ptr->GetName().c_str());
|
|
return PARAM_INVALID;
|
|
}
|
|
|
|
DataType data_type = data_tensor->GetTensorDesc().GetDataType();
|
|
if (kReduceProdSupportedType.find(data_type) == kReduceProdSupportedType.end()) {
|
|
GELOGW("ReduceProdKernel data type %s not support, node name: %s",
|
|
TypeUtils::DataTypeToSerialString(data_type).c_str(), op_desc_ptr->GetName().c_str());
|
|
return PARAM_INVALID;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status ReduceProdKernel::AxisCal(const std::vector<ge::ConstGeTensorPtr> &input) {
|
|
ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
|
|
ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex);
|
|
// support: compute for the first element of axis.
|
|
vector<int64_t> data_dims = data_tensor->GetTensorDesc().GetShape().GetDims();
|
|
size_t data_dim_size = data_dims.size();
|
|
int32_t *axis = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(axis_tensor->GetData().GetData()));
|
|
GE_CHECK_NOTNULL(axis);
|
|
if (static_cast<size_t>(*axis) >= data_dim_size) {
|
|
GELOGW("axis is out of rank of data_dims, axis is %d.", *axis);
|
|
return PARAM_INVALID;
|
|
}
|
|
axis_dim_ = data_dims[static_cast<size_t>(*axis)];
|
|
head_dim_ = 1;
|
|
end_dim_ = 1;
|
|
bool axis_appear = false;
|
|
for (size_t i = 0; i < data_dim_size; i++) {
|
|
if (i == static_cast<size_t>(*axis)) {
|
|
axis_appear = true;
|
|
continue;
|
|
}
|
|
// data_dims is the vector of dims, element in data_dims isn't negative.
|
|
if (axis_appear) {
|
|
if (data_dims[i] != 0 && end_dim_ > (INT64_MAX / data_dims[i])) {
|
|
GELOGW("Product is overflow. multiplier 1: %ld. multiplier 2: %ld.", end_dim_, data_dims[i]);
|
|
return INTERNAL_ERROR;
|
|
}
|
|
end_dim_ *= data_dims[i];
|
|
} else {
|
|
if (data_dims[i] != 0 && head_dim_ > (INT64_MAX / data_dims[i])) {
|
|
GELOGW("Product is overflow. multiplier 1: %ld. multiplier 2: %ld.", head_dim_, data_dims[i]);
|
|
return INTERNAL_ERROR;
|
|
}
|
|
head_dim_ *= data_dims[i];
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status ReduceProdKernel::DataCal(const std::vector<ge::ConstGeTensorPtr> &input, ge::GeTensorPtr output_ptr) {
|
|
ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
|
|
DataType data_dtype = data_tensor->GetTensorDesc().GetDataType();
|
|
if (data_dtype == DT_INT32) {
|
|
int32_t *input_data = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(data_tensor->GetData().GetData()));
|
|
GE_CHECK_NOTNULL(input_data);
|
|
size_t data_num = data_tensor->GetData().size() / sizeof(int32_t);
|
|
unique_ptr<int32_t[]> buf(new (std::nothrow) int32_t[data_num]());
|
|
if (buf == nullptr) {
|
|
GELOGW("new buf failed");
|
|
return INTERNAL_ERROR;
|
|
}
|
|
|
|
int32_t tmp_x = 1;
|
|
int32_t tmp_y = 1;
|
|
for (int64_t i = 0; i < head_dim_; ++i) {
|
|
for (int64_t j = 0; j < end_dim_; ++j) {
|
|
// all index for input_data is less than size of input_data
|
|
tmp_x = input_data[static_cast<size_t>(i * end_dim_ * axis_dim_ + j)];
|
|
for (int64_t k = 1; k < axis_dim_; ++k) {
|
|
tmp_y = input_data[static_cast<size_t>(i * end_dim_ * axis_dim_ + j + k * end_dim_)];
|
|
if (ge::CheckInt32MulOverflow(tmp_x, tmp_y) != SUCCESS) {
|
|
GELOGW("Product is overflow. multiplier 1: %d. multiplier 2: %d.", tmp_x, tmp_y);
|
|
return INTERNAL_ERROR;
|
|
}
|
|
tmp_x *= tmp_y;
|
|
}
|
|
buf[static_cast<size_t>(i * end_dim_ + j)] = tmp_x;
|
|
}
|
|
}
|
|
|
|
GE_IF_BOOL_EXEC(output_ptr->SetData(reinterpret_cast<uint8_t *>(buf.get()),
|
|
static_cast<size_t>(head_dim_ * end_dim_ * sizeof(int32_t))) != GRAPH_SUCCESS,
|
|
GELOGW("set data failed");
|
|
return INTERNAL_ERROR);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
void ReduceProdKernel::ShapeCal(const ge::OpDescPtr &op_desc_ptr, const std::vector<ge::ConstGeTensorPtr> &input,
|
|
ge::GeTensorPtr output_ptr) {
|
|
ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
|
|
ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex);
|
|
vector<int64_t> data_dims = data_tensor->GetTensorDesc().GetShape().GetDims();
|
|
int32_t data_dim_size = static_cast<int32_t>(data_dims.size());
|
|
const uint8_t *axis_data = axis_tensor->GetData().GetData();
|
|
GE_CHECK_NOTNULL_EXEC(axis_data, return);
|
|
int32_t axis = *(const_cast<int32_t *>(reinterpret_cast<const int32_t *>(axis_data)));
|
|
bool keep_dims = false;
|
|
if (!AttrUtils::GetBool(op_desc_ptr, "keep_dims", keep_dims)) {
|
|
GELOGI("Get the attr keep_dims was failed.");
|
|
}
|
|
|
|
if (keep_dims) {
|
|
for (int32_t i = 0; i < data_dim_size; i++) {
|
|
if (i == axis) {
|
|
data_dims[i] = 1;
|
|
}
|
|
}
|
|
} else {
|
|
vector<int64_t> tmp_dims;
|
|
for (int32_t i = 0; i < data_dim_size; i++) {
|
|
if (i != axis) {
|
|
tmp_dims.push_back(data_dims[i]);
|
|
}
|
|
}
|
|
data_dims.clear();
|
|
data_dims = tmp_dims;
|
|
}
|
|
output_ptr->MutableTensorDesc().SetShape(GeShape(data_dims));
|
|
}
|
|
|
|
Status ReduceProdKernel::ComputeNoAxis(const ge::OpDescPtr &op_desc_ptr, const std::vector<ConstGeTensorPtr> &input,
|
|
ge::GeTensorPtr output_ptr) {
|
|
ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
|
|
GE_CHECK_NOTNULL(data_tensor);
|
|
if (data_tensor->GetData().size() == 0) {
|
|
GELOGW("ReduceProdKernel data size of inputs is 0, node node: %s", op_desc_ptr->GetName().c_str());
|
|
return PARAM_INVALID;
|
|
}
|
|
DataType data_type = data_tensor->GetTensorDesc().GetDataType();
|
|
if (kReduceProdSupportedType.find(data_type) == kReduceProdSupportedType.end()) {
|
|
GELOGW("ReduceProdKernel data type %s not support, node name: %s",
|
|
TypeUtils::DataTypeToSerialString(data_type).c_str(), op_desc_ptr->GetName().c_str());
|
|
return PARAM_INVALID;
|
|
}
|
|
|
|
if (data_type == DT_INT32) {
|
|
int32_t *input_data = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(data_tensor->GetData().GetData()));
|
|
GE_CHECK_NOTNULL(input_data);
|
|
size_t data_num = data_tensor->GetData().size() / sizeof(int32_t);
|
|
unique_ptr<int32_t[]> buf(new (std::nothrow) int32_t[data_num]());
|
|
if (buf == nullptr) {
|
|
GELOGW("new buf failed");
|
|
return INTERNAL_ERROR;
|
|
}
|
|
|
|
int32_t tmp_x = input_data[0];
|
|
int32_t tmp_y = 1;
|
|
for (size_t k = 1; k < data_num; ++k) {
|
|
tmp_y = input_data[k];
|
|
if (ge::CheckInt32MulOverflow(tmp_x, tmp_y) != SUCCESS) {
|
|
GELOGW("Product is overflow. multiplier 1: %d. multiplier 2: %d.", tmp_x, tmp_y);
|
|
return INTERNAL_ERROR;
|
|
}
|
|
tmp_x *= tmp_y;
|
|
}
|
|
buf[0] = tmp_x;
|
|
GE_IF_BOOL_EXEC(output_ptr->SetData(reinterpret_cast<uint8_t *>(buf.get()), sizeof(int32_t)) != GRAPH_SUCCESS,
|
|
GELOGW("set data failed");
|
|
return INTERNAL_ERROR);
|
|
output_ptr->MutableTensorDesc().SetDataType(data_type);
|
|
output_ptr->MutableTensorDesc().SetShape(GeShape());
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status ReduceProdKernel::Compute(const ge::OpDescPtr op_desc_ptr, const std::vector<ge::ConstGeTensorPtr> &input,
|
|
std::vector<ge::GeTensorPtr> &v_output) {
|
|
GELOGI("ReduceProdKernel in.");
|
|
Status ret = ReduceProdCheck(op_desc_ptr, input);
|
|
if (ret != SUCCESS && ret != NOT_CHANGED) {
|
|
GELOGW("ReduceProdKernel input is invalid, failed to fold node.");
|
|
return NOT_CHANGED;
|
|
}
|
|
|
|
// Index 0 can always gets a GeTensorDesc object from any OpDescPtr.
|
|
auto output_tensor_desc = op_desc_ptr->GetOutputDesc(0);
|
|
GeTensorPtr output_ptr = MakeShared<GeTensor>(output_tensor_desc);
|
|
if (output_ptr == nullptr) {
|
|
GELOGW("make_shared ge::GeTensor failed, node name %s.", op_desc_ptr->GetName().c_str());
|
|
return NOT_CHANGED;
|
|
}
|
|
|
|
if (ret == NOT_CHANGED) {
|
|
// compute output tensor when no param axis
|
|
ret = ComputeNoAxis(op_desc_ptr, input, output_ptr);
|
|
if (ret != SUCCESS) {
|
|
return NOT_CHANGED;
|
|
}
|
|
} else if (input.at(kReduceProdAxisIndex)->GetData().size() == 0) {
|
|
// axis tensor value is [], means no process for input
|
|
output_ptr->MutableTensorDesc().SetShape(input.at(kReduceProdDataIndex)->GetTensorDesc().GetShape());
|
|
output_ptr->MutableTensorDesc().SetDataType(input.at(kReduceProdDataIndex)->GetTensorDesc().GetDataType());
|
|
if (output_ptr->SetData(input.at(kReduceProdDataIndex)->GetData()) != GRAPH_SUCCESS) {
|
|
GELOGW("Compute: SetData failed");
|
|
}
|
|
} else {
|
|
// calculate axis to reduce
|
|
ret = AxisCal(input);
|
|
if (ret != SUCCESS) {
|
|
return NOT_CHANGED;
|
|
}
|
|
// calculate and set shape
|
|
ShapeCal(op_desc_ptr, input, output_ptr);
|
|
// set data type
|
|
output_ptr->MutableTensorDesc().SetDataType(input.at(kReduceProdDataIndex)->GetTensorDesc().GetDataType());
|
|
|
|
// data size == 0 means input tensor has zero in shape, and tensor value is [].
|
|
if (input.at(kReduceProdDataIndex)->GetData().size() != 0) {
|
|
// calculate data and data type
|
|
ret = DataCal(input, output_ptr);
|
|
if (ret != SUCCESS) {
|
|
return NOT_CHANGED;
|
|
}
|
|
}
|
|
}
|
|
|
|
// print output tensor information, and will be deleted
|
|
GELOGD("ReduceProd op %s output tensor data size is %zu", op_desc_ptr->GetName().c_str(),
|
|
output_ptr->GetData().size());
|
|
vector<int64_t> data_dims = output_ptr->GetTensorDesc().GetShape().GetDims();
|
|
GELOGD("ReduceProd op %s output tensor dim size is %zu", op_desc_ptr->GetName().c_str(), data_dims.size());
|
|
|
|
v_output.emplace_back(output_ptr);
|
|
GELOGI("ReduceProdKernel success.");
|
|
return SUCCESS;
|
|
}
|
|
REGISTER_KERNEL(REDUCEPROD, ReduceProdKernel);
|
|
} // namespace ge
|