You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/offline/proto/om.proto

397 lines
8.9 KiB

/* Copyright (C) 2018. Huawei Technologies Co., Ltd. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the Apache License Version 2.0.You may not use this file except in compliance with the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Apache License for more details at
* http://www.apache.org/licenses/LICENSE-2.0
*/
syntax = "proto3";
package domi;
enum TargetType
{
MINI = 0;
TINY = 1;
LITE = 2;
}
// offline model
message ModelDef {
string name = 1;
uint32 version = 2;
uint64 memory_size = 10;
uint32 stream_num = 11;
uint32 event_num = 12;
uint64 weight_size = 13;
uint32 label_num = 15;
repeated OpDef op = 20;
TargetType target_type = 23;
map<string, AttrDef> attr = 30;
};
// operator define
message OpDef {
string name = 1;
string type = 2;
uint32 id = 3;
uint32 stream_id = 4;
repeated string input_name = 5;
repeated string src_name = 8;
repeated int32 src_index = 9;
repeated int64 input = 10;
repeated int64 output = 11;
repeated TensorDescriptor input_desc = 12;
repeated TensorDescriptor output_desc = 13;
repeated WeightDef weights = 14;
repeated string dst_name = 15;
repeated int32 dst_index = 16;
repeated int64 workspace = 20;
repeated uint32 workspace_bytes = 21;
repeated string weight_name = 22;
repeated bool is_input_const = 23;
map<string, AttrDef> attr = 30;
QuantizeFactorParams quantize_factor = 31;
oneof op_params {
// start at 100 here
SendOpParams sender_param = 100;
RecvOpParams receiver_param = 200;
ConvolutionOpParams convolution_param = 300;
PoolingOpParams pooling_param = 400;
EltwiseOpParams eltwise_param = 500;
BatchNormOpParams batchnorm_param = 600;
ScaleOpParams scale_param = 700;
FullConnectionOpParams full_connection_param = 800;
SoftmaxOpParams softmax_param = 900;
ActivationOpParams activation_param = 1000;
ReshapeOpParams reshape_param = 1100;
}
};
message SendOpParams {
uint32 event_id = 1;
};
message RecvOpParams {
uint32 event_id = 1;
};
enum QuantizeScaleType
{
VECTOR_SCALE = 0;
SCALAR_SCALE = 1;
}
enum QuantizeScaleMode
{
NORMAL_MODE = 0;
SQRT_MODE = 1;
}
enum QuantizeAlgorithm
{
NON_OFFSET_ALGO = 0;
HALF_OFFSET_ALGO = 1;
ALL_OFFSET_ALGO = 2;
}
message QuantizeFactor
{
QuantizeScaleMode scale_mode = 1;
bytes scale_value = 2;
int64 scale_offset = 3;
bytes offset_data_value = 4;
int64 offset_data_offset = 5;
bytes offset_weight_value = 6;
int64 offset_weight_offset = 7;
bytes offset_pad_value = 8;
int64 offset_pad_offset = 9;
};
message QuantizeCalcFactor
{
bytes offsetw = 1;
int64 offsetw_offset = 2;
bytes offsetd = 3;
int64 offsetd_offset = 4;
bytes scalereq = 5;
int64 scaledreq_offset = 6;
bytes offsetdnext = 7;
int64 offsetdnext_offset = 8;
}
message QuantizeFactorParams
{
QuantizeAlgorithm quantize_algo = 1;
QuantizeScaleType scale_type = 2;
QuantizeFactor quantize_param = 3;
QuantizeFactor dequantize_param = 4;
QuantizeFactor requantize_param = 5;
QuantizeCalcFactor quantizecalc_param = 6;
};
message ConvolutionOpParams {
int32 mode = 1;
int32 algo = 2;
int32 pad_mode = 3;
uint32 group = 4;
uint32 num_output = 5;
repeated uint32 pad = 10;
repeated uint32 stride = 11;
repeated uint32 dilation = 12;
repeated uint32 kernel = 13;
float alpha = 20;
float beta = 21;
WeightDef filter = 40;
WeightDef bias = 41;
bool relu_flag = 62;
repeated uint32 adj = 70;
repeated uint32 target_shape = 71;
repeated uint32 before_pad = 72;
};
message PoolingOpParams {
int32 mode = 1;
int32 nan_opt = 2;
int32 pad_mode = 3;
bool global_pooling = 4;
repeated uint32 window = 10;
repeated uint32 pad = 11;
repeated uint32 stride = 12;
bool ceil_mode = 13;
int32 data_mode = 14;
float alpha = 20;
float beta = 21;
repeated uint32 before_pad = 22;
};
message EltwiseOpParams {
int32 mode = 1;
repeated float coeff = 2;
float alpha = 3;
float beta = 4;
repeated WeightDef weight = 5;
bool relu_flag = 6;
};
message ActivationOpParams {
int32 mode = 1;
float coef = 2;
float alpha = 3;
float beta = 4;
};
message BatchNormOpParams {
int32 mode = 1;
float alpha = 2;
float beta = 3;
double epsilon = 4;//optinal,[default = 1e-5]
bool use_global_stats = 5; //optinal,by default true,testing mode
float moving_average_fraction = 6; //optinal,[default = .999];
WeightDef estimated_mean = 7;
WeightDef estimated_variance = 8;
WeightDef scale = 9;
WeightDef bias = 10;
};
message ScaleOpParams {
WeightDef scale = 1;
WeightDef bias = 2;
};
message ReshapeOpParams {
float alpha = 1;
float beta = 2;
ShapeDef shape = 3;
int32 axis = 4;
int32 num_axes = 5;
int32 format = 6;
};
message SoftmaxOpParams {
int32 algo = 1;
int32 mode = 2;
float alpha = 3;
float beta = 4;
};
message FullConnectionOpParams {
WeightDef filter = 1;
WeightDef bias = 2;
uint32 num_output = 3;
bool relu_flag = 12;
};
message FlattenOpParams {
float alpha = 1;
float beta = 2;
int32 start_axis = 3;
int32 end_axis = 4;
}
message AddLimitedOpParams {
float alpha = 1;
float beta = 2;
int32 axis = 3;
bool broadcast = 4;
repeated WeightDef weight = 10;
};
message MulLimitedOpParams {
float alpha = 1;
float beta = 2;
int32 axis = 3;
bool broadcast = 4;
repeated WeightDef weight = 10;
};
message AddOpParams {
float alpha = 1;
float beta = 2;
repeated WeightDef weight = 10;
};
message MulOpParams {
float alpha = 1;
float beta = 2;
repeated WeightDef weight = 10;
};
message SubOpParams {
float alpha = 1;
float beta = 2;
repeated WeightDef weight = 10;
};
message BiasAddOpParams {
float alpha = 1;
float beta = 2;
WeightDef bias = 10;
};
message MatMulOpParams {
float alpha = 1;
float beta = 2;
bool transposeX = 3;
bool transposeW = 4;
WeightDef filter = 10;
WeightDef bias = 12;
};
message RsqrtOpParams {
float alpha = 1;
float beta = 2;
};
message WeightDef {
int32 format = 1;
int32 data_type = 2;
ShapeDef shape = 3;
bytes data = 4;
int64 data_offset = 5;
uint32 cmps_size = 6;
bytes cmps_tab = 7;
int64 cmps_tab_offset = 10;
CompressInfo cmps_info = 8;
AllOffsetQuantizeInfo alloffset_quantize_info = 11;
}
message ShapeDef {
repeated int64 dim = 1;
}
enum DeviceType {
NPU = 0; // In default, we will use NPU.
CPU = 1; // CPU
}
message AllOffsetQuantizeInfo {
float scale = 1;
int32 offset = 2;
}
message TensorDescriptor {
int32 format = 1;
int32 data_type = 2;
repeated int64 dim = 3;
uint32 size = 4;
bool reuse_input = 5;
bool output_tensor = 7;
DeviceType device_type = 8;
bool input_tensor = 9;
uint32 real_dim_cnt = 10;
uint32 reuse_input_index = 11;
AllOffsetQuantizeInfo alloffset_quantize_info = 12;
}
message CompressInfo {
int32 blockRow = 1; // block row
int32 blockCol = 2; // block col
int32 fractalK = 3; // fractal K
int32 fractalN = 4; // fractal N
int32 lastFractalK = 5; // K of last fractal
int32 lastFractalN = 6; // N of last fractal
int32 cubeSize = 7; // cube's length
int32 loadDir = 8; // data load directtiono 0:col load 1:row load
}
message AttrDef {
message ListValue {
repeated string s = 2; // "list(string)"
repeated int64 i = 3 [packed = true]; // "list(int)"
repeated float f = 4 [packed = true]; // "list(float)"
repeated bool b = 5 [packed = true]; // "list(bool)"
repeated uint32 u = 6 [packed = true]; // "list(uint)"
repeated bytes bt = 7;
}
oneof value {
string s = 2; // "string"
int64 i = 3; // "int"
float f = 4; // "float"
bool b = 5; // "bool"
uint32 u = 6; // "uint32"
bytes bt = 7;
ListValue list = 1; // any "list(...)"
NamedAttrs func = 10;
}
}
// A list of attr names and their values. The whole list is attached
// with a string name. E.g., MatMul[T=float].
message NamedAttrs {
string name = 1;
map<string, AttrDef> attr = 2;
}