You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
398 lines
17 KiB
398 lines
17 KiB
/**
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "single_op/single_op.h"
|
|
|
|
#include "common/fmk_types.h"
|
|
#include "common/ge_types.h"
|
|
#include "common/math/math_util.h"
|
|
#include "common/profiling/profiling_manager.h"
|
|
#include "framework/common/debug/ge_log.h"
|
|
#include "framework/common/util.h"
|
|
#include "graph/load/model_manager/model_utils.h"
|
|
#include "runtime/mem.h"
|
|
#include "single_op/single_op_manager.h"
|
|
#include "single_op/task/build_task_utils.h"
|
|
#include "graph/load/model_manager/model_manager.h"
|
|
|
|
namespace ge {
|
|
namespace {
|
|
const size_t kDataMemAlignSize = 32;
|
|
const size_t kDataMemAlignUnit = 2;
|
|
const string kShapeTypeDynamic = "dynamic";
|
|
const string kShapeTypeStatic = "static";
|
|
const int64_t kHostMemType = 1;
|
|
const uint32_t kFuzzDeviceBufferSize = 1 * 1024 * 1024;
|
|
const uint32_t kAlignBytes = 512;
|
|
|
|
size_t GetAlignedSize(size_t size) {
|
|
size_t aligned_size = (size + kDataMemAlignUnit * kDataMemAlignSize - 1) / kDataMemAlignSize * kDataMemAlignSize;
|
|
return aligned_size;
|
|
}
|
|
|
|
Status ProfilingTaskInfo(OpTask *op_task, const string &shape_type) {
|
|
if (!ProfilingManager::Instance().ProfilingModelLoadOn()) {
|
|
return SUCCESS;
|
|
}
|
|
|
|
TaskDescInfo tmp_task_desc_info;
|
|
uint32_t model_id;
|
|
if (op_task->GetProfilingArgs(tmp_task_desc_info, model_id) != SUCCESS) {
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Get][ProfilingArgs] failed.");
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
}
|
|
GELOGD("ProfilingReport of op[%s] model[%s] start.",
|
|
tmp_task_desc_info.op_name.c_str(), tmp_task_desc_info.model_name.c_str());
|
|
|
|
tmp_task_desc_info.shape_type = shape_type;
|
|
tmp_task_desc_info.cur_iter_num = 0;
|
|
tmp_task_desc_info.task_type = op_task->GetTaskType();
|
|
|
|
std::vector<TaskDescInfo> task_desc_info;
|
|
task_desc_info.emplace_back(tmp_task_desc_info);
|
|
|
|
auto &profiling_manager = ProfilingManager::Instance();
|
|
profiling_manager.ReportProfilingData(model_id, task_desc_info);
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status CalInputsHostMemSize(const std::vector<DataBuffer> &inputs,
|
|
std::vector<std::pair<size_t, uint64_t>> &inputs_size) {
|
|
int64_t total_size = 0;
|
|
size_t index = 0;
|
|
for (auto &input_buffer : inputs) {
|
|
int64_t input_size = 0;
|
|
if (input_buffer.placement == kHostMemType) {
|
|
GE_CHECK_LE(input_buffer.length, INT64_MAX);
|
|
input_size = input_buffer.length;
|
|
// input_size pad to 512
|
|
GE_CHK_STATUS_RET(CheckInt64AddOverflow(input_size, (kAlignBytes - 1)), "Padding size is beyond the INT64_MAX.");
|
|
input_size = ((input_size + kAlignBytes - 1) / kAlignBytes) * kAlignBytes;
|
|
inputs_size.emplace_back(index, input_size);
|
|
GE_CHK_STATUS_RET(CheckInt64AddOverflow(total_size, input_size), "Total size is beyond the INT64_MAX.");
|
|
total_size += input_size;
|
|
GELOGD("The %zu input mem type is host, the tensor size is %ld.", index, input_size);
|
|
}
|
|
index++;
|
|
}
|
|
if (total_size > kFuzzDeviceBufferSize) {
|
|
GELOGE(FAILED, "[Check][Size]Total size is %ld, larger than 1M.", total_size);
|
|
return FAILED;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status UpdateInputsBufferAddr(StreamResource *stream_resource, rtStream_t stream,
|
|
const std::vector<std::pair<size_t, uint64_t>> &inputs_size,
|
|
std::vector<DataBuffer> &update_buffers) {
|
|
GE_CHECK_NOTNULL(stream_resource);
|
|
auto dst_addr = reinterpret_cast<uint8_t *>(stream_resource->GetDeviceBufferAddr());
|
|
// copy host mem from input_buffer to device mem of dst_addr
|
|
for (const auto &input_size : inputs_size) {
|
|
auto index = input_size.first;
|
|
auto size = input_size.second;
|
|
GELOGD("Do h2d for %zu input, dst size is %zu, src length is %lu.", index, size, update_buffers[index].length);
|
|
GE_CHK_RT_RET(rtMemcpyAsync(dst_addr, size, update_buffers[index].data, update_buffers[index].length,
|
|
RT_MEMCPY_HOST_TO_DEVICE_EX, stream));
|
|
update_buffers[index].data = dst_addr;
|
|
dst_addr = dst_addr + size;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status InitHybridModelArgs(const std::vector<DataBuffer> &input_buffers,
|
|
const std::vector<DataBuffer> &output_buffers,
|
|
const std::vector<GeTensorDesc> &inputs_desc,
|
|
hybrid::HybridModelExecutor::ExecuteArgs &args) {
|
|
for (auto &input : input_buffers) {
|
|
args.inputs.emplace_back(hybrid::TensorValue(input.data, input.length));
|
|
}
|
|
for (auto &output : output_buffers) {
|
|
args.outputs.emplace_back(hybrid::TensorValue(output.data, output.length));
|
|
}
|
|
for (auto &tensor_desc : inputs_desc) {
|
|
auto desc = MakeShared<GeTensorDesc>(tensor_desc);
|
|
GE_CHECK_NOTNULL(desc);
|
|
args.input_desc.emplace_back(desc);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
} // namespace
|
|
|
|
SingleOp::SingleOp(StreamResource *stream_resource, std::mutex *stream_mutex, rtStream_t stream)
|
|
: stream_resource_(stream_resource), stream_mutex_(stream_mutex), stream_(stream) {
|
|
}
|
|
|
|
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY SingleOp::~SingleOp() {
|
|
for (auto task : tasks_) {
|
|
delete task;
|
|
task = nullptr;
|
|
}
|
|
}
|
|
|
|
Status SingleOp::ValidateArgs(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs) {
|
|
auto num_inputs = inputs.size();
|
|
if (num_inputs != input_sizes_.size()) {
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID,
|
|
"[Check][Param:inputs]Input num mismatch. model expect %zu, but given %zu", input_addr_list_.size(),
|
|
inputs.size());
|
|
REPORT_INPUT_ERROR("E10401", std::vector<std::string>({"expect_num", "input_num"}),
|
|
std::vector<std::string>({std::to_string(input_addr_list_.size()), std::to_string(num_inputs)}));
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
}
|
|
|
|
for (size_t i = 0; i < num_inputs; ++i) {
|
|
// preventing from read out of bound
|
|
size_t aligned_size = GetAlignedSize(inputs[i].length);
|
|
GELOGI("Input [%zu], aligned_size:%zu, inputs.length:%lu, input_sizes_:%zu",
|
|
i, aligned_size, inputs[i].length, input_sizes_[i]);
|
|
if (aligned_size < input_sizes_[i]) {
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID,
|
|
"[Check][Param:inputs]Input size mismatch. index = %zu, model expect %zu, but given %zu(after align)",
|
|
i, input_sizes_[i], aligned_size);
|
|
REPORT_INPUT_ERROR("E10402", std::vector<std::string>({"index", "expect_size", "input_size"}),
|
|
std::vector<std::string>({std::to_string(i), std::to_string(input_sizes_[i]), std::to_string(aligned_size)})
|
|
);
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
}
|
|
}
|
|
|
|
auto num_outputs = outputs.size();
|
|
if (num_outputs != output_sizes_.size()) {
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Param:outputs]output num mismatch. model expect %zu, but given %zu",
|
|
output_sizes_.size(), outputs.size());
|
|
REPORT_INPUT_ERROR("E10403", std::vector<std::string>({"expect_num", "input_num"}),
|
|
std::vector<std::string>({std::to_string(output_sizes_.size()), std::to_string(outputs.size())}));
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
}
|
|
|
|
for (size_t i = 0; i < num_outputs; ++i) {
|
|
// preventing from write out of bound
|
|
size_t aligned_size = GetAlignedSize(outputs[i].length);
|
|
GELOGI("Output [%zu], aligned_size:%zu, outputs.length:%lu, output_sizes_:%zu",
|
|
i, aligned_size, outputs[i].length, output_sizes_[i]);
|
|
if (aligned_size < output_sizes_[i]) {
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID,
|
|
"[Check][Param:outputs]Output size mismatch. index = %zu, model expect %zu, but given %zu(after align)",
|
|
i, output_sizes_[i], aligned_size);
|
|
REPORT_INPUT_ERROR("E10404", std::vector<std::string>({"index", "expect_size", "input_size"}),
|
|
std::vector<std::string>({std::to_string(i), std::to_string(output_sizes_[i]), std::to_string(aligned_size)})
|
|
);
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
}
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status SingleOp::GetArgs(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs) {
|
|
size_t arg_index = 0;
|
|
for (auto &input : inputs) {
|
|
args_[arg_index++] = reinterpret_cast<uintptr_t>(input.data);
|
|
}
|
|
|
|
for (auto &output : outputs) {
|
|
args_[arg_index++] = reinterpret_cast<uintptr_t>(output.data);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status SingleOp::UpdateArgs(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs) {
|
|
Status ret = GetArgs(inputs, outputs);
|
|
if (ret != SUCCESS) {
|
|
return ret;
|
|
}
|
|
// update tbe task args
|
|
size_t num_args = arg_table_.size();
|
|
for (size_t i = 0; i < num_args; ++i) {
|
|
std::vector<uintptr_t *> &ptr_to_arg_in_tasks = arg_table_[i];
|
|
if (ptr_to_arg_in_tasks.empty()) {
|
|
GELOGW("found NO arg address to update for arg[%lu]", i);
|
|
continue;
|
|
}
|
|
|
|
for (uintptr_t *arg_addr : ptr_to_arg_in_tasks) {
|
|
*arg_addr = args_[i];
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY Status SingleOp::ExecuteAsync(const std::vector<DataBuffer> &inputs,
|
|
const std::vector<DataBuffer> &outputs) {
|
|
GELOGD("Start SingleOp::ExecuteAsync.");
|
|
Status ret = ValidateArgs(inputs, outputs);
|
|
if (ret != SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
GE_CHECK_NOTNULL(stream_resource_);
|
|
vector<pair<size_t, uint64_t>> inputs_size;
|
|
GE_CHK_STATUS_RET_NOLOG(CalInputsHostMemSize(inputs, inputs_size));
|
|
std::lock_guard<std::mutex> lk(*stream_mutex_);
|
|
vector<DataBuffer> update_buffers = inputs;
|
|
if (!inputs_size.empty()) {
|
|
GE_CHK_STATUS_RET_NOLOG(UpdateInputsBufferAddr(stream_resource_, stream_, inputs_size, update_buffers));
|
|
}
|
|
|
|
if (hybrid_model_executor_ != nullptr) {
|
|
GELOGD("Execute multi-task single op by hybrid model executor");
|
|
hybrid::HybridModelExecutor::ExecuteArgs args;
|
|
GE_CHK_STATUS_RET_NOLOG(InitHybridModelArgs(update_buffers, outputs, inputs_desc_, args));
|
|
return hybrid_model_executor_->Execute(args);
|
|
}
|
|
|
|
auto current_mem_base = stream_resource_->GetMemoryBase();
|
|
if (running_param_->mem_base != current_mem_base) {
|
|
running_param_->mem_base = const_cast<uint8_t *>(current_mem_base);
|
|
GELOGD("Memory base changed, new memory base = %p", current_mem_base);
|
|
for (auto &task : tasks_) {
|
|
auto new_address = BuildTaskUtils::GetAddresses(task->GetOpdesc(), *running_param_);
|
|
GE_CHK_STATUS_RET(task->UpdateArgTable(*running_param_), "[Update][ArgTable] failed, single op:%s.",
|
|
task->GetOpdesc()->GetName().c_str());
|
|
}
|
|
}
|
|
ret = UpdateArgs(update_buffers, outputs);
|
|
if (ret != SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
for (auto &task : tasks_) {
|
|
ret = task->LaunchKernel(stream_);
|
|
if (ret != SUCCESS) {
|
|
return ret;
|
|
}
|
|
GE_CHK_STATUS_RET(task->OpenDump(stream_), "[Open][Dump]failed, single op:%s.",
|
|
task->GetOpdesc()->GetName().c_str());
|
|
GE_CHK_STATUS_RET_NOLOG(ProfilingTaskInfo(task, kShapeTypeStatic));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void SingleOp::SetStream(rtStream_t stream) {
|
|
stream_ = stream;
|
|
}
|
|
|
|
DynamicSingleOp::DynamicSingleOp(uintptr_t resource_id, std::mutex *stream_mutex, rtStream_t stream)
|
|
: resource_id_(resource_id), stream_mutex_(stream_mutex), stream_(stream) {
|
|
}
|
|
|
|
Status DynamicSingleOp::ValidateParams(const vector<GeTensorDesc> &input_desc,
|
|
const std::vector<DataBuffer> &inputs,
|
|
std::vector<GeTensorDesc> &output_desc,
|
|
std::vector<DataBuffer> &outputs) const {
|
|
if (inputs.size() != input_desc.size()) {
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID,
|
|
"[Check][Param:inputs]Input number mismatches input desc number. Input num = %zu, input desc num = %zu",
|
|
inputs.size(), input_desc.size());
|
|
REPORT_INPUT_ERROR("E10405", std::vector<std::string>({"input_num", "input_desc_num"}),
|
|
std::vector<std::string>({std::to_string(inputs.size()), std::to_string(input_desc.size())}));
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
}
|
|
|
|
if (outputs.size() != output_desc.size()) {
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID,
|
|
"[Check][Param:outputs]Output number mismatches output desc number. Output num = %zu, output desc num = %zu",
|
|
outputs.size(), output_desc.size());
|
|
REPORT_INPUT_ERROR("E10406", std::vector<std::string>({"out_num", "out_desc_num"}),
|
|
std::vector<std::string>({std::to_string(outputs.size()), std::to_string(output_desc.size())}));
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
}
|
|
|
|
if (input_desc.size() != num_inputs_) {
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Param:input_desc]Input number mismatches. expect %zu, but given %zu",
|
|
num_inputs_, input_desc.size());
|
|
REPORT_INPUT_ERROR("E10401", std::vector<std::string>({"expect_num", "input_num"}),
|
|
std::vector<std::string>({std::to_string(num_inputs_), std::to_string(input_desc.size())}));
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
}
|
|
|
|
if (output_desc.size() != num_outputs_) {
|
|
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Param:output_desc]Output number mismatches. expect %zu, but given %zu",
|
|
num_outputs_, output_desc.size());
|
|
REPORT_INPUT_ERROR("E10403", std::vector<std::string>({"expect_num", "input_num"}),
|
|
std::vector<std::string>({std::to_string(num_outputs_), std::to_string(output_desc.size())}));
|
|
return ACL_ERROR_GE_PARAM_INVALID;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status DynamicSingleOp::SetHostTensorValue(const std::vector<std::pair<size_t, uint64_t>> &inputs_size,
|
|
const vector<GeTensorDesc> &input_desc,
|
|
const std::vector<DataBuffer> &input_buffers) {
|
|
auto op_desc = op_task_->GetOpdesc();
|
|
GE_CHECK_NOTNULL(op_desc);
|
|
GELOGD("Start update inputs tensor value of %s.", op_desc->GetName().c_str());
|
|
for (const auto &input_size : inputs_size) {
|
|
size_t index = input_size.first;
|
|
auto ge_tensor_desc = input_desc.at(index);
|
|
// reconstruct GeTensor by DataBuffer
|
|
GeTensorPtr ge_tensor = MakeShared<GeTensor>(ge_tensor_desc);
|
|
GE_CHECK_NOTNULL(ge_tensor);
|
|
GELOGD("The %zu tensor input type is host, desc data type is %d, input buffer addr is %p, size is %ld.",
|
|
index, ge_tensor_desc.GetDataType(), input_buffers[index].data, input_buffers[index].length);
|
|
if (ge_tensor->SetData(reinterpret_cast<uint8_t *>(input_buffers[index].data),
|
|
static_cast<size_t>(input_buffers[index].length)) != SUCCESS) {
|
|
GELOGE(INTERNAL_ERROR, "[Set][Data]Failed to set data of ge tensor.");
|
|
return INTERNAL_ERROR;
|
|
}
|
|
auto tensor_desc = op_desc->MutableInputDesc(index);
|
|
GE_CHECK_NOTNULL(tensor_desc);
|
|
if (!AttrUtils::SetTensor(tensor_desc, ATTR_NAME_VALUE, ge_tensor)) {
|
|
GELOGE(FAILED, "[Set][ATTR_NAME_VALUE]Failed to set ATTR_NAME_VALUE to %s.", op_desc->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status DynamicSingleOp::ExecuteAsync(const vector<GeTensorDesc> &input_desc,
|
|
const vector<DataBuffer> &input_buffers,
|
|
vector<GeTensorDesc> &output_desc,
|
|
vector<DataBuffer> &output_buffers) {
|
|
GELOGD("Start DynamicSingleOp::ExecuteAsync.");
|
|
GE_CHK_STATUS_RET_NOLOG(ValidateParams(input_desc, input_buffers, output_desc, output_buffers));
|
|
vector<pair<size_t, uint64_t>> inputs_size;
|
|
GE_CHK_STATUS_RET_NOLOG(CalInputsHostMemSize(input_buffers, inputs_size));
|
|
vector<DataBuffer> update_buffers = input_buffers;
|
|
std::lock_guard<std::mutex> lk(*stream_mutex_);
|
|
if (!inputs_size.empty()) {
|
|
StreamResource *stream_resource = SingleOpManager::GetInstance().GetResource(resource_id_, stream_);
|
|
GE_CHK_STATUS_RET_NOLOG(UpdateInputsBufferAddr(stream_resource, stream_, inputs_size, update_buffers));
|
|
}
|
|
|
|
if (hybrid_model_executor_ != nullptr) {
|
|
GELOGD("Execute multi-task dynamic single op by hybrid model executor");
|
|
hybrid::HybridModelExecutor::ExecuteArgs args;
|
|
GE_CHK_STATUS_RET_NOLOG(InitHybridModelArgs(update_buffers, output_buffers, input_desc, args));
|
|
|
|
return hybrid_model_executor_->Execute(args);
|
|
}
|
|
GE_CHECK_NOTNULL(op_task_);
|
|
if (!inputs_size.empty()) {
|
|
GE_CHK_STATUS_RET_NOLOG(SetHostTensorValue(inputs_size, input_desc, input_buffers));
|
|
GE_CHK_STATUS_RET_NOLOG(op_task_->LaunchKernel(input_desc, update_buffers, output_desc, output_buffers, stream_));
|
|
} else {
|
|
GE_CHK_STATUS_RET_NOLOG(op_task_->LaunchKernel(input_desc, input_buffers, output_desc, output_buffers, stream_));
|
|
}
|
|
GE_CHK_STATUS_RET_NOLOG(op_task_->OpenDump(stream_));
|
|
GE_CHK_STATUS_RET_NOLOG(ProfilingTaskInfo(op_task_.get(), kShapeTypeDynamic));
|
|
return SUCCESS;
|
|
}
|
|
} // namespace ge
|