You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/tests/ut/ge/generator/ge_generator_unittest.cc

172 lines
5.6 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#define private public
#define protected public
#include "generator/ge_generator.h"
#include "graph/utils/tensor_utils.h"
#include "graph/attr_value.h"
#include "graph/debug/ge_attr_define.h"
#include "graph/utils/graph_utils.h"
#include "../graph/passes/graph_builder_utils.h"
#include "../graph/manager/graph_manager.h"
#include "all_ops.h"
using namespace std;
namespace ge {
class UtestGeGenerator : public testing::Test {
protected:
void SetUp() {}
void TearDown() {}
};
namespace {
ComputeGraphPtr MakeGraph() {
ge::ut::GraphBuilder builder("graph");
auto data = builder.AddNode("data", "Data", 1, 1);
auto addn1 = builder.AddNode("addn1", "AddN", 1, 1);
builder.AddDataEdge(data, 0, addn1, 0);
return builder.GetGraph();
}
} // namespace
/*
TEST_F(UtestGeGenerator, test_build_single_op_offline) {
GeTensorDesc tensor_desc(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor_desc, 512);
shared_ptr<OpDesc> op_desc = make_shared<OpDesc>("Add", "add");
EXPECT_EQ(op_desc->AddInputDesc(tensor_desc), GRAPH_SUCCESS);
EXPECT_EQ(op_desc->AddInputDesc(tensor_desc), GRAPH_SUCCESS);
EXPECT_EQ(op_desc->AddOutputDesc(tensor_desc), GRAPH_SUCCESS);
GeTensor tensor(tensor_desc);
const vector<GeTensor> inputs = { tensor, tensor };
const vector<GeTensor> outputs = { tensor };
// not Initialize, impl is null.
GeGenerator generator;
EXPECT_EQ(generator.BuildSingleOpModel(op_desc, inputs, outputs, "offline_"), PARAM_INVALID);
// const map<string, string> &options
generator.Initialize({});
EXPECT_EQ(generator.BuildSingleOpModel(op_desc, inputs, outputs, "offline_"), GE_GENERATOR_GRAPH_MANAGER_BUILD_GRAPH_FAILED);
}
*/
TEST_F(UtestGeGenerator, test_build_single_op_online) {
GeTensorDesc tensor_desc;
shared_ptr<OpDesc> op_desc = make_shared<OpDesc>("Add", "add");
op_desc->AddInputDesc(tensor_desc);
op_desc->AddInputDesc(tensor_desc);
op_desc->AddOutputDesc(tensor_desc);
GeTensor tensor(tensor_desc);
const vector<GeTensor> inputs = { tensor, tensor };
const vector<GeTensor> outputs = { tensor };
GeGenerator generator;
generator.Initialize({});
ModelBufferData model_buffer;
EXPECT_EQ(generator.BuildSingleOpModel(op_desc, inputs, outputs, ENGINE_AIVECTOR, model_buffer), FAILED);
}
TEST_F(UtestGeGenerator, test_singleop_fuzz_build) {
GeTensorDesc tensor_desc;
shared_ptr<OpDesc> op_desc = make_shared<OpDesc>("Add", "add");
op_desc->AddInputDesc(tensor_desc);
op_desc->AddInputDesc(tensor_desc);
op_desc->AddOutputDesc(tensor_desc);
GeTensor tensor(tensor_desc);
const vector<GeTensor> inputs = { tensor, tensor };
const vector<GeTensor> outputs = { tensor };
GeGenerator generator;
generator.Initialize({});
ModelBufferData model_buffer;
bool compile_flag = true;
EXPECT_EQ(generator.BuildSingleOpModel(op_desc, inputs, outputs, ENGINE_AIVECTOR, compile_flag, model_buffer), SUCCESS);
}
TEST_F(UtestGeGenerator, test_check_aicore) {
GeGenerator generator;
generator.Initialize({});
auto graph = MakeGraph();
EXPECT_EQ(generator.CheckNoAicore(graph), true);
}
TEST_F(UtestGeGenerator, test_graph_manager) {
GraphManager graph_manager;
GraphPartitioner graph_partitioner;
auto root_graph = MakeGraph();
auto sub_graph = MakeGraph();
root_graph->AddSubGraph(sub_graph);
auto sgi = MakeShared<SubGraphInfo>();
// set engine name
sgi->SetEngineName("AIcoreEngine");
sgi->SetSubGraph(sub_graph);
auto sgi_gelocal = MakeShared<SubGraphInfo>();
// set engine name
sgi_gelocal->SetEngineName("GELOCAL");
sgi_gelocal->SetSubGraph(sub_graph);
graph_partitioner.graph_2_input_subgraph_[root_graph] = sgi_gelocal;
graph_partitioner.graph_2_subgraph_list_.insert({root_graph, {sgi, sgi_gelocal}});
graph_partitioner.graph_2_subgraph_list_.insert({sub_graph, {sgi, sgi_gelocal}});
EXPECT_EQ(graph_manager.ConvertGraphToFile(root_graph, graph_partitioner, "./"), GRAPH_SUCCESS);
}
TEST_F(UtestGeGenerator, test_set_model_name) {
GeGenerator generator;
generator.Initialize({});
GeRootModelPtr ge_root_model = make_shared<GeRootModel>(GeRootModel());
ComputeGraphPtr graph = make_shared<ComputeGraph>(ComputeGraph("graph"));
(void)AttrUtils::SetBool(graph, "_dynamic_shape_partitioned", true);
ge_root_model->root_graph_ = std::move(graph);
EXPECT_EQ(generator.SetModelNameForDump(ge_root_model), SUCCESS);
}
TEST_F(UtestGeGenerator, test_remove_const) {
GeGenerator generator;
GeTensorDesc tensor_desc;
GeTensor tensor(tensor_desc);
const vector<GeTensor> inputs = {tensor};
vector<GeTensor> outputs;
generator.RemoveConst(inputs, outputs);
}
TEST_F(UtestGeGenerator, test_generate_online_model) {
GeTensorDesc tensor_desc;
GeTensor tensor(tensor_desc);
const vector<GeTensor> inputs = { tensor, tensor };
auto compute_graph = MakeGraph();
compute_graph->TopologicalSorting();
Graph graph = ge::GraphUtils::CreateGraphFromComputeGraph(compute_graph);
GeGenerator generator;
generator.Initialize({});
std::string name;
EXPECT_NE(generator.GenerateOfflineModel(graph, name, inputs), SUCCESS);
}
} // namespace ge