You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/host_kernels/broadcast_gradient_args_ker...

89 lines
3.2 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "host_kernels/broadcast_gradient_args_kernel.h"
#include <vector>
#include "common/op/ge_op_utils.h"
#include "common/types.h"
#include "common/util.h"
#include "framework/common/debug/ge_log.h"
#include "framework/common/ge_inner_error_codes.h"
#include "graph/common/bcast.h"
#include "graph/passes/pass_utils.h"
#include "inc/kernel_factory.h"
namespace ge {
namespace {
const size_t kBCastGradArgsInputsSize = 2;
const size_t kBCastGradArgsOutputsSize = 2;
} // namespace
Status BroadcastGradientArgsKernel::Compute(const OpDescPtr op_desc_ptr, const std::vector<ConstGeTensorPtr> &input,
std::vector<GeTensorPtr> &v_output) {
GELOGD("BroadcastGradientArgs kernel in");
if (op_desc_ptr == nullptr) {
GELOGE(PARAM_INVALID, "Parameter's invalid, Input opDescPtr is nullptr.");
return PARAM_INVALID;
}
// check input size
bool size_check_fail =
(op_desc_ptr->GetAllInputsDesc().size() != kBCastGradArgsInputsSize || input.size() != kBCastGradArgsInputsSize ||
op_desc_ptr->GetAllOutputsDesc().size() != kBCastGradArgsOutputsSize);
if (size_check_fail) {
GELOGW(
"input/output size error. InDesc size:%zu,"
"OutDesc size:%zu, in size:%zu ",
op_desc_ptr->GetAllInputsDesc().size(), op_desc_ptr->GetAllOutputsDesc().size(), input.size());
return NOT_CHANGED;
}
vector<int64_t> x1_dims;
vector<int64_t> x2_dims;
DataType x1_data_type = op_desc_ptr->GetInputDesc(0).GetDataType();
DataType x2_data_type = op_desc_ptr->GetInputDesc(1).GetDataType();
bool result = (OpUtils::GetShapeDataFromConstTensor(input[0], x1_data_type, x1_dims) == SUCCESS) &&
(OpUtils::GetShapeDataFromConstTensor(input[1], x2_data_type, x2_dims) == SUCCESS);
if (!result) {
GELOGE(PARAM_INVALID, "Get shape data from const tensor fail.");
return PARAM_INVALID;
}
BCast bcast;
Status ret = bcast.GenerateBcastInfo(x1_dims, x2_dims);
if (ret != SUCCESS) {
GELOGE(ret, "Generate bcast info fail.");
return ret;
}
vector<vector<int64_t>> grad_reduce_idx;
grad_reduce_idx.push_back(bcast.GetGradXReduceIdx());
grad_reduce_idx.push_back(bcast.GetGradYReduceIdx());
for (size_t i = 0; i < grad_reduce_idx.size(); i++) {
ret = PassUtils::ConstructTensorDescWithData(op_desc_ptr->GetOutputDesc(i), grad_reduce_idx[i], v_output);
if (ret != SUCCESS) {
GELOGE(ret, "BroadcastGradientArgs kernel construct tensor desc fail");
return ret;
}
}
return SUCCESS;
}
REGISTER_KERNEL(BROADCASTGRADIENTARGS, BroadcastGradientArgsKernel);
} // namespace ge