You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/host_kernels/ssd_prior_box_kernel.cc

384 lines
14 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "host_kernels/ssd_prior_box_kernel.h"
#include <cfloat>
#include <algorithm>
#include <memory>
#include <utility>
#include "common/math/math_util.h"
#include "common/math_util.h"
#include "common/types.h"
#include "framework/common/util.h"
#include "graph/debug/ge_attr_define.h"
#include "graph/passes/pass_utils.h"
#include "graph/utils/attr_utils.h"
#include "inc/kernel_factory.h"
namespace ge {
namespace {
const float kMinistBias = 1e-6;
const float kAspectRationBase = 1.0;
const size_t kBoundarySize = 4;
const size_t kOutputDescFirstIndex = 0;
const size_t kDimIndexZero = 0;
const size_t kDimIndexOne = 1;
const size_t kDimIndexTwo = 2;
const size_t kDimIndexThree = 3;
const int kNumVariance = 4;
const int32_t kNumOne = 1;
const int32_t kNumTwo = 2;
const float kFloatNumTwo = 2.0;
} // namespace
Status SsdPriorboxKernel::GetPriorSizeParam(const OpDescPtr &op_desc, int &img_width, int &img_height, float &step_w,
float &step_h, int &layer_width, int &layer_height) {
if (op_desc == nullptr) {
GELOGE(PARAM_INVALID, "input opdescptr is nullptr.");
return PARAM_INVALID;
}
const GeTensorDesc tensor_desc = op_desc->GetInputDesc(kOutputDescFirstIndex);
layer_width = tensor_desc.GetShape().GetDim(kDimIndexThree);
layer_height = tensor_desc.GetShape().GetDim(kDimIndexTwo);
if (layer_height == 0 || layer_width == 0) {
GELOGE(PARAM_INVALID, "op:%s NCHW_DIM_H or NCHW_DIM_W is 0", op_desc->GetName().c_str());
return PARAM_INVALID;
}
int32_t img_h = 0;
int32_t img_w = 0;
if (!AttrUtils::GetInt(op_desc, SSD_PRIOR_BOX_ATTR_IMG_H, img_h)) {
GELOGE(PARAM_INVALID, "op:%s img_h attr is null", op_desc->GetName().c_str());
return PARAM_INVALID;
}
if (!AttrUtils::GetInt(op_desc, SSD_PRIOR_BOX_ATTR_IMG_W, img_w)) {
GELOGE(PARAM_INVALID, "op:%s img_w attr is null", op_desc->GetName().c_str());
return PARAM_INVALID;
}
if (img_h == 0 || img_w == 0) {
GELOGE(PARAM_INVALID, "op:%s Either img_h or img_w is null", op_desc->GetName().c_str());
return PARAM_INVALID;
} else {
img_width = static_cast<int>(img_w);
img_height = static_cast<int>(img_h);
}
float step_height = 0.0;
float step_width = 0.0;
if (!AttrUtils::GetFloat(op_desc, SSD_PRIOR_BOX_ATTR_STEP_H, step_height)) {
GELOGE(PARAM_INVALID, "op:%s step_height attr is null", op_desc->GetName().c_str());
return PARAM_INVALID;
}
if (!AttrUtils::GetFloat(op_desc, SSD_PRIOR_BOX_ATTR_STEP_W, step_width)) {
GELOGE(PARAM_INVALID, "op:%s step_width attr is null", op_desc->GetName().c_str());
return PARAM_INVALID;
}
if ((fabs(step_height) < FLT_EPSILON) || (fabs(step_width) < FLT_EPSILON)) {
step_w = static_cast<float>(img_width) / layer_width;
step_h = static_cast<float>(img_height) / layer_height;
} else {
step_w = step_width;
step_h = step_height;
}
return SUCCESS;
}
Status SsdPriorboxKernel::GetPriorListParam(const OpDescPtr &op_desc, vector<float> &min_size_list,
vector<float> &max_size_list, vector<float> &aspect_ratio_list,
vector<float> &variance_list) {
if (!AttrUtils::GetListFloat(op_desc, SSD_PRIOR_BOX_ATTR_MIN_SIZE, min_size_list)) {
GELOGE(PARAM_INVALID, "op:%s min_size() attr is null", op_desc->GetName().c_str());
return PARAM_INVALID;
}
if (!AttrUtils::GetListFloat(op_desc, SSD_PRIOR_BOX_ATTR_MAX_SIZE, max_size_list)) {
GELOGE(PARAM_INVALID, "op:%s max_size() attr is null", op_desc->GetName().c_str());
return PARAM_INVALID;
}
if (!AttrUtils::GetListFloat(op_desc, SSD_PRIOR_BOX_ATTR_VARIANCE, variance_list)) {
GELOGE(PARAM_INVALID, "op:%s variance() attr is null", op_desc->GetName().c_str());
return PARAM_INVALID;
}
if (!AttrUtils::GetListFloat(op_desc, SSD_PRIOR_BOX_ATTR_ASPECT_RATIO, aspect_ratio_list)) {
GELOGE(PARAM_INVALID, "op:%s aspect_ratio() attr is null", op_desc->GetName().c_str());
return PARAM_INVALID;
}
// if flip is true,aspect_ratio_list need add reciprocal
bool flip = false;
if (!AttrUtils::GetBool(op_desc, SSD_PRIOR_BOX_ATTR_FLIP, flip)) {
GELOGE(PARAM_INVALID, "op:%s flip() attr is null", op_desc->GetName().c_str());
return PARAM_INVALID;
}
vector<float> aspect_ratios;
aspect_ratios.push_back(SSD_PRIORBOX_ASPECT_RATIO_VALUE);
for (size_t i = 0; i < aspect_ratio_list.size(); i++) {
float ar = aspect_ratio_list.at(i);
bool already_exist =
std::any_of(aspect_ratios.begin(), aspect_ratios.end(), [&ar](float x) { return fabs(ar - x) < kMinistBias; });
if (!already_exist) {
aspect_ratios.push_back(ar);
if (flip) {
aspect_ratios.push_back(1. / ar); // 1. reciprocal
}
}
}
aspect_ratio_list = std::move(aspect_ratios);
return SUCCESS;
}
Status SsdPriorboxKernel::GetPriorOtherParam(const OpDescPtr &op_desc, float &offset, bool &clip) {
if (!AttrUtils::GetBool(op_desc, SSD_PRIOR_BOX_ATTR_CLIP, clip)) {
GELOGE(PARAM_INVALID, "op:%s clip() attr is null", op_desc->GetName().c_str());
return PARAM_INVALID;
}
if (!AttrUtils::GetFloat(op_desc, SSD_PRIOR_BOX_ATTR_OFFSET, offset)) {
GELOGE(PARAM_INVALID, "op:%s offset() attr is null", op_desc->GetName().c_str());
return PARAM_INVALID;
}
return SUCCESS;
}
Status SsdPriorboxKernel::SetVariance(const vector<float> &variance, const int dim, const int32_t layer_height,
const int32_t layer_width, const int num_priors, float *output_data) {
if (output_data == nullptr) {
GELOGE(PARAM_INVALID, "output_data is null");
return PARAM_INVALID;
}
output_data += dim;
if (variance.size() == 1) {
if (NnSet(dim, variance[0], output_data) != SUCCESS) {
GELOGE(PARAM_INVALID, "NnSet failed.");
return PARAM_INVALID;
}
} else {
size_t count = 0;
for (int i = 0; i < layer_height * layer_width * num_priors; ++i) {
for (size_t j = 0; j < 4; ++j) { // 4 variance
output_data[count] = variance[j];
++count;
}
}
}
return SUCCESS;
}
Status SsdPriorboxKernel::GetNumPriorAndDimSize(uint32_t aspect_ratios_size,
uint32_t min_sizes_size,
uint32_t max_sizes_size,
int layer_width,
int layer_height,
int &num_priors,
int &dim_size) const {
if (ge::CheckUint32MulOverflow(min_sizes_size, aspect_ratios_size) != SUCCESS) {
return PARAM_INVALID;
}
uint32_t tmp_value = aspect_ratios_size * min_sizes_size;
if (ge::CheckUint32AddOverflow(tmp_value, max_sizes_size) != SUCCESS) {
GELOGW("Failed to get list param.");
return PARAM_INVALID;
}
tmp_value += max_sizes_size;
if (tmp_value > INT32_MAX) {
GELOGE(PARAM_INVALID, "Failed to get list param.");
return PARAM_INVALID;
}
num_priors = static_cast<int>(tmp_value);
if (ge::CheckIntMulOverflow(layer_width, layer_height) != SUCCESS) {
GELOGW("Failed to get list param.");
return PARAM_INVALID;
}
if (ge::CheckIntMulOverflow(layer_width * layer_height, num_priors) != SUCCESS) {
GELOGW("Failed to get list param.");
return PARAM_INVALID;
}
if (ge::CheckIntMulOverflow(layer_width * layer_height * num_priors, kNumVariance) != SUCCESS) {
GELOGW("Failed to get list param.");
return PARAM_INVALID;
}
dim_size = layer_width * layer_height * num_priors * kNumVariance; // 4 variance
return SUCCESS;
}
void SsdPriorboxKernel::DataCalulate(float x, float y, float box_x, float box_y, int img_x, int img_y,
vector<float> &result) {
result.clear();
// xmin
result.push_back((x - box_x / kFloatNumTwo) / static_cast<float>(img_x));
// ymin
result.push_back((y - box_y / kFloatNumTwo) / static_cast<float>(img_y));
// xmax
result.push_back((x + box_x / kFloatNumTwo) / static_cast<float>(img_x));
// ymax
result.push_back((y + box_y / kFloatNumTwo) / static_cast<float>(img_y));
}
std::unique_ptr<float[]> SsdPriorboxKernel::BoundaryCalulate(int dim_size, int layer_width, int layer_height,
float step_width, float step_height, int img_width,
int img_height, float offset, vector<float> min_sizes,
vector<float> max_sizes, vector<float> aspect_ratios) {
// output two channel.First channel stores the mean of each prior coordinate.
// Second channel stores the variance of each prior coordinate.
unique_ptr<float[]> output_data(new (std::nothrow) float[dim_size * kNumTwo]());
if (output_data == nullptr) {
GELOGE(PARAM_INVALID, "Failed to create output_data ptr.");
return nullptr;
}
int idx = 0;
vector<float> boundaries;
for (int height_index = 0; height_index < layer_height; ++height_index) {
for (int width_index = 0; width_index < layer_width; ++width_index) {
float center_x = (width_index + offset) * step_width;
float center_y = (height_index + offset) * step_height;
for (size_t size_index = 0; size_index < min_sizes.size(); ++size_index) {
int min_size = min_sizes[size_index];
// first prior: aspect_ratio = 1, size = min_size
float box_width = min_size;
float box_height = min_size;
DataCalulate(center_x, center_y, box_width, box_height, img_width, img_height, boundaries);
size_t index = 0;
while (index < kBoundarySize) {
output_data[idx++] = boundaries[index++];
}
if (!max_sizes.empty()) {
int max_size = max_sizes[size_index];
// second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
box_width = sqrt(min_size * max_size);
DataCalulate(center_x, center_y, box_width, box_width, img_width, img_height, boundaries);
index = 0;
while (index < kBoundarySize) {
output_data[idx++] = boundaries[index++];
}
}
// rest of priors
for (size_t ratio_index = 0; ratio_index < aspect_ratios.size(); ++ratio_index) {
float aspect_ratio = aspect_ratios[ratio_index];
if (fabs(aspect_ratio - kAspectRationBase) < kMinistBias) { // aspect ration base:1.
continue;
}
box_width = min_size * sqrt(aspect_ratio);
box_height = min_size / sqrt(aspect_ratio);
DataCalulate(center_x, center_y, box_width, box_height, img_width, img_height, boundaries);
index = 0;
while (index < kBoundarySize) {
output_data[idx++] = boundaries[index++];
}
}
}
}
}
return output_data;
}
Status SsdPriorboxKernel::Compute(const NodePtr &node, std::vector<GeTensorPtr> &v_output) {
GELOGD("SsdPriorboxKernel in");
OpDescPtr op_desc = node->GetOpDesc();
if (op_desc == nullptr) {
GELOGE(PARAM_INVALID, "node:%s opdesc is null", node->GetName().c_str());
return PARAM_INVALID;
}
int img_width = 0;
int img_height = 0;
int layer_width = 0;
int layer_height = 0;
float step_width = 0.0;
float step_height = 0.0;
Status ret = GetPriorSizeParam(op_desc, img_width, img_height, step_width, step_height, layer_width, layer_height);
if (ret != SUCCESS) {
GELOGE(PARAM_INVALID, "Failed to get size param.");
return PARAM_INVALID;
}
float offset = 0.0;
bool clip = false;
ret = GetPriorOtherParam(op_desc, offset, clip);
if (ret != SUCCESS) {
GELOGE(PARAM_INVALID, "Failed to get other param.");
return PARAM_INVALID;
}
vector<float> min_sizes;
vector<float> aspect_ratios;
vector<float> variances;
vector<float> max_sizes;
if (GetPriorListParam(op_desc, min_sizes, max_sizes, aspect_ratios, variances) != SUCCESS) {
GELOGE(PARAM_INVALID, "Failed to get list param.");
return PARAM_INVALID;
}
int num_priors = 0;
int dim_size = 0;
ret = GetNumPriorAndDimSize(aspect_ratios.size(), min_sizes.size(), max_sizes.size(), layer_width, layer_height,
num_priors, dim_size);
if (ret != SUCCESS) {
GELOGE(PARAM_INVALID, "Failed to get other param.");
return PARAM_INVALID;
}
auto output_data = BoundaryCalulate(dim_size, layer_width, layer_height, step_width, step_height, img_width,
img_height, offset, min_sizes, max_sizes, aspect_ratios);
if (output_data == nullptr) {
GELOGE(PARAM_INVALID, "Failed to create output_data ptr.");
return PARAM_INVALID;
}
if (clip) {
for (int d = 0; d < dim_size; ++d) {
// clip the prior's coordidate such that it is within [0.0 1.0]
output_data[d] = std::min<float>(std::max<float>(output_data[d], 0.), 1.);
}
}
// set the variance.
if (SetVariance(variances, dim_size, layer_height, layer_width, num_priors, output_data.get()) != SUCCESS) {
GELOGE(PARAM_INVALID, "Failed to set variance.");
return PARAM_INVALID;
}
GeTensorDesc output_tensor_desc = op_desc->GetOutputDesc(0);
std::vector<int64_t> v_dims(3, 1); // 3 dims
v_dims[kDimIndexZero] = kNumOne;
v_dims[kDimIndexOne] = kNumTwo;
v_dims[kDimIndexTwo] = dim_size;
DataType data_type = output_tensor_desc.GetDataType();
output_tensor_desc.Update(GeShape(v_dims), FORMAT_NCHW, data_type);
// make TensorDesc
GeTensorPtr output_ptr = MakeShared<GeTensor>(output_tensor_desc);
if (output_ptr == nullptr) {
GELOGW("Create shared ptr for GeTensor failed");
return NOT_CHANGED;
}
GE_IF_BOOL_EXEC(output_ptr->SetData(reinterpret_cast<uint8_t *>(output_data.get()),
static_cast<size_t>(dim_size * kNumTwo * sizeof(data_type))) != GRAPH_SUCCESS,
GELOGE(INTERNAL_ERROR, "set data failed");
return INTERNAL_ERROR);
v_output.push_back(output_ptr);
return SUCCESS;
}
REGISTER_KERNEL(SSDPRIORBOX, SsdPriorboxKernel);
} // namespace ge