You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/hybrid/node_executor/task_context.cc

463 lines
15 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "task_context.h"
#include "framework/common/ge_inner_error_codes.h"
#include "framework/common/debug/log.h"
#include "graph/utils/tensor_utils.h"
#include "graph/debug/ge_attr_define.h"
#include "hybrid/executor/hybrid_execution_context.h"
#include "hybrid/executor/subgraph_executor.h"
namespace ge {
namespace hybrid {
TaskContext::TaskContext(GraphExecutionContext *execution_context,
const NodeItem *node_item,
SubgraphContext *subgraph_context)
: node_item_(node_item), execution_context_(execution_context), subgraph_context_(subgraph_context) {
}
TaskContext::~TaskContext() {
GELOGD("[%s] TaskContext destroyed.", node_item_->NodeName().c_str());
for (auto ws_addr : workspaces_) {
execution_context_->allocator->Deallocate(ws_addr);
}
// release output
for (int i = 0; i < NumOutputs(); ++i) {
auto output_tensor = MutableOutput(i);
if (output_tensor != nullptr) {
output_tensor->Destroy();
}
}
}
std::unique_ptr<TaskContext> TaskContext::Create(const NodeItem &node_item,
GraphExecutionContext *execution_context,
SubgraphContext *subgraph_context) {
GELOGI("[%s] To create task context, input start = %d, num_inputs = %d, output start = %d, num_outputs = %d.",
node_item.NodeName().c_str(),
node_item.input_start,
node_item.num_inputs,
node_item.output_start,
node_item.num_outputs);
if (node_item.input_start < 0 || node_item.output_start < 0) {
GELOGE(INTERNAL_ERROR,
"NodeItem not property initialized. input_start = %d, output_start = %d",
node_item.input_start,
node_item.output_start);
return nullptr;
}
auto task_context = std::unique_ptr<TaskContext>(
new(std::nothrow)TaskContext(execution_context, &node_item, subgraph_context));
if (task_context == nullptr) {
GELOGE(MEMALLOC_FAILED, "[%s] Failed to create instance of TaskContext.", node_item.NodeName().c_str());
return nullptr;
}
task_context->node_item_ = &node_item;
task_context->inputs_start_ = subgraph_context->all_inputs_.data() + node_item.input_start;
task_context->outputs_start_ = subgraph_context->all_outputs_.data() + node_item.output_start;
task_context->iteration_ = execution_context->iteration;
return task_context;
}
int TaskContext::NumInputs() const {
return node_item_->num_inputs;
}
int TaskContext::NumOutputs() const {
return node_item_->num_outputs;
}
TensorValue *TaskContext::MutableInput(int index) {
if (index < 0 || index >= node_item_->num_inputs) {
GELOGE(PARAM_INVALID, "Index out of range. index = %d, num_inputs = %d", index, node_item_->num_inputs);
return nullptr;
}
return inputs_start_ + index;
}
const TensorValue *TaskContext::GetOutput(int index) const {
if (index < 0 || index >= node_item_->num_outputs) {
GELOGE(PARAM_INVALID, "Index out of range. index = %d, num_outputs = %d", index, node_item_->num_outputs);
return nullptr;
}
return outputs_start_ + index;
}
TensorValue *TaskContext::MutableOutput(int index) {
if (index < 0 || index >= node_item_->num_outputs) {
GELOGE(PARAM_INVALID, "Index out of range. index = %d, num_outputs = %d", index, node_item_->num_outputs);
return nullptr;
}
return outputs_start_ + index;
}
std::size_t TaskContext::NumWorkspaces() const {
return workspaces_.size();
}
void *TaskContext::MutableWorkspace(int index) {
if (index < 0 || static_cast<size_t>(index) >= workspaces_.size()) {
GELOGE(PARAM_INVALID, "Index out of range. index = %d, num_workspaces = %d", index, node_item_->num_outputs);
return nullptr;
}
return workspaces_[index];
}
const TensorValue *TaskContext::GetInput(int index) const {
if (index < 0 || index >= node_item_->num_inputs) {
GELOGE(PARAM_INVALID, "Index out of range. index = %d, num_inputs = %d", index, node_item_->num_inputs);
return nullptr;
}
return inputs_start_ + index;
}
Status TaskContext::AllocateWorkspaces() {
auto workspace_sizes = node_item_->node->GetOpDesc()->GetWorkspaceBytes();
for (auto size : workspace_sizes) {
void *workspace = execution_context_->allocator->Allocate(size);
if (workspace == nullptr) {
GELOGE(MEMALLOC_FAILED, "Failed to allocate workspace of size: %ld", size);
return MEMALLOC_FAILED;
}
workspaces_.emplace_back(workspace);
}
return SUCCESS;
}
Status TaskContext::RegisterCallback(const std::function<void()> &callback_fun) const {
auto ret = execution_context_->callback_manager->RegisterCallback(callback_fun);
if (ret != SUCCESS) {
GELOGE(ret, "[%s] Failed to register callback", GetNodeName());
execution_context_->callback_manager->Destroy();
return ret;
}
return SUCCESS;
}
string TaskContext::TensorDesc2String(const GeTensorDesc &desc) {
std::stringstream ss;
ss << "[TensorDesc] ";
ss << "DataType = " << desc.GetDataType();
ss << ", Format = " << desc.GetFormat();
ss << ", Shape = [";
for (auto dim : desc.GetShape().GetDims()) {
ss << dim << ", ";
}
ss << "]";
return ss.str();
}
Status TaskContext::AllocateTensor(const GeTensorDesc &tensor_desc, TensorValue &tensor, AllocationAttr *attr) {
int64_t size = 0;
if (ge::TensorUtils::GetSize(tensor_desc, size) != GRAPH_SUCCESS) {
GELOGE(INTERNAL_ERROR, "Failed to get tensor size");
return INTERNAL_ERROR;
}
if (size == 0) {
GELOGW("size from tensor_desc == 0");
}
auto buffer = TensorBuffer::Create(execution_context_->allocator, size, attr);
GE_CHECK_NOTNULL(buffer);
tensor = TensorValue(shared_ptr<TensorBuffer>(buffer.release()));
return SUCCESS;
}
Status TaskContext::AllocateOutput(int index,
const GeTensorDesc &tensor_desc,
TensorValue **tensor,
AllocationAttr *attr) {
GELOGI("To allocate output for node: %s. index = %d, tensor desc = %s",
node_item_->NodeName().c_str(),
index,
TensorDesc2String(tensor_desc).c_str());
if (index < 0 || index >= node_item_->num_outputs) {
GELOGE(PARAM_INVALID, "output index out of range. num_output = %d, index = %d", node_item_->num_outputs, index);
return PARAM_INVALID;
}
if (outputs_start_[index].GetData() != nullptr) {
GELOGI("already allocated as net output");
return SUCCESS;
}
auto it = node_item_->ref_outputs.find(index);
if (it != node_item_->ref_outputs.end()) {
auto &ref_node = it->second;
GELOGD("source node of %s:%d = %s, op_type = %s",
node_item_->NodeName().c_str(),
index,
ref_node->GetName().c_str(),
ref_node->GetType().c_str());
TensorValue *ref_tensor = execution_context_->model->GetVariable(ref_node->GetName());
GE_CHECK_NOTNULL(ref_tensor);
outputs_start_[index] = *ref_tensor;
} else {
auto reuse_output_it = node_item_->reuse_outputs.find(index);
if (reuse_output_it != node_item_->reuse_outputs.end()) {
GELOGD("[%s] reuse output [%d] with output [%d]", GetNodeName(), index, reuse_output_it->second);
outputs_start_[index] = outputs_start_[reuse_output_it->second];
} else {
auto reuse_input = node_item_->reuse_inputs.find(index);
if (reuse_input != node_item_->reuse_inputs.end()) {
GELOGD("[%s] Output[%d] is referenced to input[%d]", GetNodeName(), index, reuse_input->second);
outputs_start_[index] = inputs_start_[reuse_input->second];
} else {
GE_CHK_STATUS_RET_NOLOG(AllocateTensor(tensor_desc, outputs_start_[index], attr));
GELOGD("Allocating output successfully. node: %s. index = %d, size = %zu",
node_item_->NodeName().c_str(),
index,
outputs_start_[index].GetSize());
}
}
}
if (execution_context_->trace_enabled) {
outputs_start_[index].SetName(node_item_->NodeName() + "_out_" + std::to_string(index));
}
if (tensor != nullptr) {
*tensor = outputs_start_ + index;
}
return SUCCESS;
}
Status TaskContext::AllocateOutputs(AllocationAttr *attr) {
for (int i = 0; i < node_item_->num_outputs; ++i) {
const auto &output_desc = node_item_->op_desc->MutableOutputDesc(i);
GE_CHECK_NOTNULL(output_desc);
uint32_t mem_type = 0;
(void)AttrUtils::GetInt(output_desc, ATTR_OUTPUT_MEMORY_TYPE, mem_type);
if (attr == nullptr) {
auto tmp_attr = AllocationAttr(0, nullptr, static_cast<MemStorageType>(mem_type));
GE_CHK_STATUS_RET_NOLOG(AllocateOutput(i, *output_desc, nullptr, &tmp_attr));
} else {
attr->SetMemType(static_cast<MemStorageType>(mem_type));
GE_CHK_STATUS_RET_NOLOG(AllocateOutput(i, *output_desc, nullptr, attr));
}
}
return SUCCESS;
}
Status TaskContext::AllocateTensor(size_t size, TensorValue &tensor, AllocationAttr *attr) {
auto buffer = TensorBuffer::Create(execution_context_->allocator, size, attr);
if (buffer == nullptr) {
GELOGE(MEMALLOC_FAILED, "Failed to allocate buffer of size: %zu", size);
return MEMALLOC_FAILED;
}
tensor = TensorValue(shared_ptr<TensorBuffer>(buffer.release()));
return SUCCESS;
}
const NodeItem &TaskContext::GetNodeItem() const {
return *node_item_;
}
Status TaskContext::SetOutput(int index, const TensorValue &tensor) {
if (index < 0 || index >= node_item_->num_outputs) {
GELOGE(PARAM_INVALID, "output index out of range. num_output = %d, index = %d", node_item_->num_outputs, index);
return PARAM_INVALID;
}
GELOGD("Set %s:%d with tensor: %s",
node_item_->NodeName().c_str(),
index,
tensor.DebugString().c_str());
outputs_start_[index] = tensor;
return SUCCESS;
}
rtStream_t TaskContext::GetStream() {
return execution_context_->stream;
}
int64_t TaskContext::GetSessionId() const {
return execution_context_->session_id;
}
Status TaskContext::GetStatus() const {
return status_;
}
void TaskContext::SetStatus(Status status) {
status_ = status;
if (status != SUCCESS) {
execution_context_->SetErrorCode(status);
}
}
Status TaskContext::AllocateWorkspace(size_t size, void **buffer, void *ori_addr) {
GE_CHECK_NOTNULL(buffer);
if (ori_addr == nullptr) {
*buffer = execution_context_->allocator->Allocate(size, nullptr);
} else {
AllocationAttr attr(ori_addr);
*buffer = execution_context_->allocator->Allocate(size, &attr);
}
if (*buffer == nullptr) {
GELOGE(MEMALLOC_FAILED, "Failed to allocate workspace of size = %zu", size);
return MEMALLOC_FAILED;
}
GELOGD("Allocating workspace of size = %zu successfully", size);
workspaces_.emplace_back(*buffer);
return SUCCESS;
}
Status TaskContext::PropagateOutputs() {
// propagate outputs
for (int i = 0; i < NumOutputs(); ++i) {
auto tensor = MutableOutput(i);
GE_CHECK_NOTNULL(tensor);
if (tensor->GetData() == nullptr) {
GELOGD("[%s] Node output[%d] is null.", node_item_->NodeName().c_str(), i);
}
auto &output_nodes = node_item_->outputs[i];
for (auto &dst_input_index_and_node : output_nodes) {
auto dst_input_idx = dst_input_index_and_node.first;
auto dst_node_item = dst_input_index_and_node.second;
auto input_offset = dst_node_item->input_start + dst_input_idx;
GELOGI(
"Propagate output of node %s, output index = %d, dst node = %s, "
"dst_input_index = %d, dst_input_offset = %d.",
node_item_->NodeName().c_str(),
i,
dst_node_item->NodeName().c_str(),
dst_input_idx,
input_offset);
if (subgraph_context_->all_inputs_.size() <= static_cast<size_t>(input_offset)) {
GELOGE(INTERNAL_ERROR,
"[%s] input index out of range. index = %d, total input num = %zu",
GetNodeName(),
input_offset,
subgraph_context_->all_inputs_.size());
return INTERNAL_ERROR;
}
subgraph_context_->all_inputs_[input_offset] = *tensor;
if (execution_context_->trace_enabled) {
subgraph_context_->all_inputs_[input_offset].SetName(
node_item_->NodeName() + "_in_" + std::to_string(dst_input_idx));
}
}
}
return SUCCESS;
}
const void *TaskContext::GetVarBaseAddr() {
return execution_context_->model->GetVarMemBase();
}
const char *TaskContext::GetNodeName() const {
return node_item_->NodeName().c_str();
}
void TaskContext::ReleaseInput(int index) {
auto input_tensor = MutableInput(index);
if (input_tensor != nullptr) {
input_tensor->Destroy();
GELOGD("[%s] Tensor of input[%d] released", GetNodeName(), index);
}
}
ConstGeTensorDescPtr TaskContext::GetOutputDesc(int index) {
return node_item_->op_desc->MutableOutputDesc(static_cast<uint32_t>(index));
}
ConstGeTensorDescPtr TaskContext::GetInputDesc(int index) {
return node_item_->op_desc->MutableInputDesc(static_cast<uint32_t>(index));
}
GeTensorDescPtr TaskContext::MutableInputDesc(int index) {
return node_item_->op_desc->MutableInputDesc(static_cast<uint32_t>(index));
}
GeTensorDescPtr TaskContext::MutableOutputDesc(int index) {
return node_item_->op_desc->MutableOutputDesc(static_cast<uint32_t>(index));
}
bool TaskContext::IsForceInferShape() const {
return force_infer_shape_;
}
void TaskContext::SetForceInferShape(bool force_infer_shape) {
force_infer_shape_ = force_infer_shape;
}
void TaskContext::NodeDone() {
subgraph_context_->NodeDone(node_item_->node);
}
void TaskContext::OnError(Status error) {
subgraph_context_->OnError(error);
execution_context_->SetErrorCode(error);
}
bool TaskContext::IsTraceEnabled() const {
return execution_context_->trace_enabled;
}
TensorValue *TaskContext::GetVariable(const std::string &name) {
return execution_context_->model->GetVariable(name);
}
uint64_t TaskContext::GetIterationNumber() const {
return iteration_;
}
bool TaskContext::IsDumpEnabled() const {
return execution_context_->dump_enabled;
}
Status TaskContext::TryExecuteCallback(const function<void()> &callback_fun) const {
if (!callback_fun) {
return SUCCESS;
}
if (node_item_->has_observer) {
return RegisterCallback(callback_fun);
}
callback_fun();
return SUCCESS;
}
const DumpProperties &TaskContext::GetDumpProperties() const {
return execution_context_->dump_properties;
}
} // namespace hybrid
} // namespace ge