You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							216 lines
						
					
					
						
							7.2 KiB
						
					
					
				
			
		
		
	
	
							216 lines
						
					
					
						
							7.2 KiB
						
					
					
				/**
 | 
						|
 * Copyright 2019-2020 Huawei Technologies Co., Ltd
 | 
						|
 *
 | 
						|
 * Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
 * you may not use this file except in compliance with the License.
 | 
						|
 * You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 * http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 * Unless required by applicable law or agreed to in writing, software
 | 
						|
 * distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 * See the License for the specific language governing permissions and
 | 
						|
 * limitations under the License.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef GE_OP_STATEFUL_RANDOM_OPS_H
 | 
						|
#define GE_OP_STATEFUL_RANDOM_OPS_H
 | 
						|
 | 
						|
#include "graph/operator.h"
 | 
						|
#include "graph/operator_reg.h"
 | 
						|
 | 
						|
namespace ge {
 | 
						|
 | 
						|
/**
 | 
						|
*@brief Non-deterministically generates some integers.
 | 
						|
 | 
						|
*@par Inputs:
 | 
						|
*This op may use some OS-provided source of non-determinism (e.g. an RNG), \n
 | 
						|
*so each execution will give different results. Inputs included:
 | 
						|
*@li shape: The shape of the output tensor.
 | 
						|
 | 
						|
*@par Outputs:
 | 
						|
*y:A Returns Non-deterministic integer values with specified shape.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
REG_OP(NonDeterministicInts)
 | 
						|
    .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
 | 
						|
    .OUTPUT(y, TensorType({DT_INT32,DT_INT64}))
 | 
						|
    .REQUIRED_ATTR(dtype, Type)
 | 
						|
    .OP_END_FACTORY_REG(NonDeterministicInts)
 | 
						|
 | 
						|
/**
 | 
						|
*@brief Advance the counter of a counter-based RNG. The state of the RNG after \n
 | 
						|
*`rng_skip(n)` will be the same as that after `stateful_uniform([n])` \n
 | 
						|
*(or any other distribution). The actual increment added to the \n
 | 
						|
*counter is an unspecified implementation detail.
 | 
						|
 | 
						|
*@par Inputs:
 | 
						|
*@li resource: The handle of the resource variable that stores the state of the RNG.
 | 
						|
*@li algorithm: The RNG algorithm.
 | 
						|
*@li delta: The amount of advancement.
 | 
						|
 | 
						|
*@par Outputs:
 | 
						|
*y:A Returns the created operation.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
REG_OP(RngSkip)
 | 
						|
    .INPUT(x, TensorType({DT_RESOURCE}))
 | 
						|
    .INPUT(algorithm, TensorType({DT_INT64}))
 | 
						|
    .INPUT(delta, TensorType({DT_INT64}))
 | 
						|
    .OP_END_FACTORY_REG(RngSkip)
 | 
						|
 | 
						|
/**
 | 
						|
*@brief Outputs random integers from a uniform distribution. \n
 | 
						|
The generated values are uniform integers in the range `[minval, maxval)`. \n
 | 
						|
The lower bound `minval` is included in the range, while the upper bound \n
 | 
						|
`maxval` is excluded. \n
 | 
						|
The random integers are slightly biased unless `maxval - minval` is an exact \n
 | 
						|
power of two.  The bias is small for values of `maxval - minval` significantly \n
 | 
						|
smaller than the range of the output (either `2^32` or `2^64`).
 | 
						|
 | 
						|
*@par Inputs:
 | 
						|
*@li resource: The handle of the resource variable that stores the state of the RNG.
 | 
						|
*@li algorithm: The RNG algorithm.
 | 
						|
*@li shape: The shape of the output tensor.
 | 
						|
*@li minval: Minimum value (inclusive, scalar).
 | 
						|
*@li maxval: Maximum value (exclusive, scalar).
 | 
						|
 | 
						|
*@par Outputs:
 | 
						|
*y:A Returns Random values with specified shape.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
REG_OP(StatefulRandomBinomial)
 | 
						|
    .INPUT(x, TensorType({DT_RESOURCE}))
 | 
						|
    .INPUT(algorithm, TensorType({DT_INT64}))
 | 
						|
    .INPUT(shape, TensorType({DT_INT32}))
 | 
						|
    .INPUT(counts, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
 | 
						|
    .INPUT(probs, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
 | 
						|
    .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_INT32, DT_INT64}))
 | 
						|
    .REQUIRED_ATTR(dtype, Type)
 | 
						|
    .OP_END_FACTORY_REG(StatefulRandomBinomial)
 | 
						|
 | 
						|
/**
 | 
						|
*@brief Outputs random values from a normal distribution. \n
 | 
						|
*The generated values will have mean 0 and standard deviation 1.
 | 
						|
 | 
						|
*@par Inputs:
 | 
						|
*@li resource: The handle of the resource variable that stores the state of the RNG.
 | 
						|
*@li algorithm: The RNG algorithm.
 | 
						|
*@li shape: The shape of the output tensor.
 | 
						|
 | 
						|
*@par Outputs:
 | 
						|
*y:A Returns A tensor of the specified shape filled with random normal values.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
REG_OP(StatefulStandardNormalV2)
 | 
						|
    .INPUT(x, TensorType({DT_RESOURCE}))
 | 
						|
    .INPUT(algorithm, TensorType({DT_INT64}))
 | 
						|
    .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
 | 
						|
    .OUTPUT(y, TensorType({DT_FLOAT}))
 | 
						|
    .OP_END_FACTORY_REG(StatefulStandardNormalV2)
 | 
						|
 | 
						|
/**
 | 
						|
*@brief Outputs random values from a truncated normal distribution. \n
 | 
						|
*The generated values follow a normal distribution with mean 0 and standard \n
 | 
						|
*deviation 1, except that values whose magnitude is more than 2 standard \n
 | 
						|
*deviations from the mean are dropped and re-picked.
 | 
						|
 | 
						|
*@par Inputs:
 | 
						|
*@li resource: The handle of the resource variable that stores the state of the RNG.
 | 
						|
*@li algorithm: The RNG algorithm.
 | 
						|
*@li shape: The shape of the output tensor.
 | 
						|
 | 
						|
*@par Outputs:
 | 
						|
*y:A Returns Random values with specified shape.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
REG_OP(StatefulTruncatedNormal)
 | 
						|
    .INPUT(x, TensorType({DT_RESOURCE}))
 | 
						|
    .INPUT(algorithm, TensorType({DT_INT64}))
 | 
						|
    .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
 | 
						|
    .OUTPUT(y, TensorType({DT_FLOAT}))
 | 
						|
    .OP_END_FACTORY_REG(StatefulTruncatedNormal)
 | 
						|
 | 
						|
/**
 | 
						|
*@brief Outputs random values from a uniform distribution. \n
 | 
						|
The generated values follow a uniform distribution in the range `[0, 1)`. The \n
 | 
						|
lower bound 0 is included in the range, while the upper bound 1 is excluded. \n
 | 
						|
 | 
						|
*@par Inputs:
 | 
						|
*@li resource: The handle of the resource variable that stores the state of the RNG.
 | 
						|
*@li algorithm: The RNG algorithm.
 | 
						|
*@li shape: The shape of the output tensor.
 | 
						|
 | 
						|
*@par Outputs:
 | 
						|
*y:A Returns Random values with specified shape.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
REG_OP(StatefulUniform)
 | 
						|
    .INPUT(x, TensorType({DT_RESOURCE}))
 | 
						|
    .INPUT(algorithm, TensorType({DT_INT64}))
 | 
						|
    .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
 | 
						|
    .OUTPUT(y, TensorType({DT_FLOAT}))
 | 
						|
    .OP_END_FACTORY_REG(StatefulUniform)
 | 
						|
 | 
						|
/**
 | 
						|
*@brief Outputs random integers from a uniform distribution. \n
 | 
						|
The generated values are uniform integers covering the whole range of `dtype`.
 | 
						|
 | 
						|
*@par Inputs:
 | 
						|
*@li resource: The handle of the resource variable that stores the state of the RNG.
 | 
						|
*@li algorithm: The RNG algorithm.
 | 
						|
*@li shape: The shape of the output tensor.
 | 
						|
 | 
						|
*@par Outputs:
 | 
						|
*y:A  Returns Random values with specified shape.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
REG_OP(StatefulUniformFullInt)
 | 
						|
    .INPUT(x, TensorType({DT_RESOURCE}))
 | 
						|
    .INPUT(algorithm, TensorType({DT_INT64}))
 | 
						|
    .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
 | 
						|
    .OUTPUT(y, TensorType({DT_UINT64}))
 | 
						|
    .OP_END_FACTORY_REG(StatefulUniformFullInt)
 | 
						|
 | 
						|
/**
 | 
						|
*@brief Outputs random integers from a uniform distribution. \n
 | 
						|
The generated values are uniform integers in the range `[minval, maxval)`. \n
 | 
						|
The lower bound `minval` is included in the range, while the upper bound \n
 | 
						|
`maxval` is excluded. \n
 | 
						|
The random integers are slightly biased unless `maxval - minval` is an exact \n
 | 
						|
power of two.  The bias is small for values of `maxval - minval` significantly \n
 | 
						|
smaller than the range of the output (either `2^32` or `2^64`).
 | 
						|
 | 
						|
*@par Inputs:
 | 
						|
*@li resource: The handle of the resource variable that stores the state of the RNG.
 | 
						|
*@li algorithm: The RNG algorithm.
 | 
						|
*@li shape: The shape of the output tensor.
 | 
						|
*@li minval: Minimum value (inclusive, scalar).
 | 
						|
*@li maxval: Maximum value (exclusive, scalar).
 | 
						|
 | 
						|
*@par Outputs:
 | 
						|
*y:A Returns Random values with specified shape.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
REG_OP(StatefulUniformInt)
 | 
						|
    .INPUT(x, TensorType({DT_RESOURCE}))
 | 
						|
    .INPUT(algorithm, TensorType({DT_INT64}))
 | 
						|
    .INPUT(shape, TensorType({DT_INT32,DT_INT64}))
 | 
						|
    .INPUT(minval, TensorType({DT_INT64}))
 | 
						|
    .INPUT(maxval, TensorType({DT_INT64}))
 | 
						|
    .OUTPUT(y, TensorType({DT_INT64}))
 | 
						|
    .OP_END_FACTORY_REG(StatefulUniformInt)
 | 
						|
 | 
						|
}  // namespace ge
 | 
						|
 | 
						|
#endif //GE_OP_STATELESS_RANDOM_OPS_H
 |