You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/tests/ut/ge/graph/load/davinci_model_unittest.cc

901 lines
34 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#define private public
#define protected public
#include "graph/utils/graph_utils.h"
#include "common/profiling/profiling_manager.h"
#include "graph/load/model_manager/davinci_model.h"
using namespace std;
namespace ge {
extern OpDescPtr CreateOpDesc(string name, string type);
class DModelListener : public ModelListener {
public:
DModelListener(){};
uint32_t OnComputeDone(uint32_t model_id, uint32_t data_index, uint32_t result, vector<OutputTensorInfo> &outputs) {
return 0;
}
};
shared_ptr<ModelListener> g_local_call_back(new DModelListener());
class UtestDavinciModel : public testing::Test {
protected:
void SetUp() {}
void TearDown() {}
};
int32_t MsprofReport(uint32_t moduleId, uint32_t type, void *data, uint32_t len) {
return 0;
}
TEST_F(UtestDavinciModel, init_success) {
DavinciModel model(0, nullptr);
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
ProfilingManager::Instance().is_load_profiling_ = true;
GeModelPtr ge_model = make_shared<GeModel>();
ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
ge_model->SetModelTaskDef(model_task_def);
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
{
OpDescPtr op_desc = CreateOpDesc("data", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index = 0
}
{
OpDescPtr op_desc = CreateOpDesc("square", "Square");
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index = 1
domi::TaskDef *task_def = model_task_def->add_task();
task_def->set_stream_id(0);
task_def->set_type(RT_MODEL_TASK_KERNEL);
domi::KernelDef *kernel_def = task_def->mutable_kernel();
kernel_def->set_stub_func("stub_func");
kernel_def->set_args_size(64);
string args(64, '1');
kernel_def->set_args(args.data(), 64);
domi::KernelContext *context = kernel_def->mutable_context();
context->set_op_index(op_desc->GetId());
context->set_kernel_type(2); // ccKernelType::TE
uint16_t args_offset[9] = {0};
context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
}
{
OpDescPtr op_desc = CreateOpDesc("memcpy", MEMCPYASYNC);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({5120});
NodePtr node = graph->AddNode(op_desc); // op_index = 2
domi::TaskDef *task_def = model_task_def->add_task();
task_def->set_stream_id(0);
task_def->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
domi::MemcpyAsyncDef *memcpy_async = task_def->mutable_memcpy_async();
memcpy_async->set_src(1024);
memcpy_async->set_dst(5120);
memcpy_async->set_dst_max(512);
memcpy_async->set_count(1);
memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
memcpy_async->set_op_index(op_desc->GetId());
}
{
OpDescPtr op_desc = CreateOpDesc("output", NETOUTPUT);
op_desc->AddInputDesc(tensor);
op_desc->SetInputOffset({5120});
op_desc->SetSrcName( { "memcpy" } );
op_desc->SetSrcIndex( { 0 } );
NodePtr node = graph->AddNode(op_desc); // op_index = 3
}
EXPECT_EQ(model.Assign(ge_model), SUCCESS);
EXPECT_EQ(model.Init(), SUCCESS);
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 1);
EXPECT_EQ(model.task_list_.size(), 2);
OutputData output_data;
vector<OutputTensorInfo> outputs;
EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
EXPECT_EQ(output_data.blobs.size(), 1);
EXPECT_EQ(outputs.size(), 1);
ProfilingManager::Instance().is_load_profiling_ = false;
}
TEST_F(UtestDavinciModel, init_data_op) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>();
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_input = CreateOpDesc("data", DATA);
op_input->AddInputDesc(tensor);
op_input->AddOutputDesc(tensor);
op_input->SetInputOffset({1024});
op_input->SetOutputOffset({1024});
NodePtr node_input = graph->AddNode(op_input);
OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
op_output->AddInputDesc(tensor);
op_output->SetInputOffset({1024});
op_output->SetSrcName( { "data" } );
op_output->SetSrcIndex( { 0 } );
NodePtr node_output = graph->AddNode(op_output);
EXPECT_EQ(model.InitNodes(graph), SUCCESS);
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 1);
EXPECT_EQ(model.op_list_.size(), 2);
}
TEST_F(UtestDavinciModel, init_data_op_subgraph) {
DavinciModel model(0, nullptr);
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_input = CreateOpDesc("data", DATA);
op_input->AddInputDesc(tensor);
op_input->AddOutputDesc(tensor);
op_input->SetInputOffset({1024});
op_input->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_input);
uint32_t data_op_index = 0;
map<uint32_t, OpDescPtr> data_by_index;
set<const void *> input_outside_addrs;
EXPECT_EQ(model.InitDataOp(nullptr, node, data_op_index, data_by_index, input_outside_addrs), SUCCESS);
EXPECT_EQ(model.input_addrs_list_.size(), 0);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(data_op_index, 0);
EXPECT_TRUE(data_by_index.empty());
}
TEST_F(UtestDavinciModel, init_netoutput_op_subgraph) {
DavinciModel model(0, nullptr);
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
op_output->AddInputDesc(tensor);
op_output->SetInputOffset({1024});
op_output->SetSrcName( { "data" } );
op_output->SetSrcIndex( { 0 } );
NodePtr node = graph->AddNode(op_output);
std::vector<OpDescPtr> output_op_list;
set<const void *> output_outside_addrs;
EXPECT_EQ(model.InitNetOutput(nullptr, node, output_op_list, output_outside_addrs), SUCCESS);
EXPECT_EQ(model.input_addrs_list_.size(), 0);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_TRUE(output_op_list.empty());
}
TEST_F(UtestDavinciModel, init_unknown) {
DavinciModel model(0, nullptr);
model.SetKnownNode(true);
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeModelPtr ge_model = make_shared<GeModel>();
ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
ge_model->SetModelTaskDef(model_task_def);
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_input = CreateOpDesc("data", DATA);
op_input->AddInputDesc(tensor);
op_input->AddOutputDesc(tensor);
op_input->SetInputOffset({1024});
op_input->SetOutputOffset({1024});
NodePtr node_input = graph->AddNode(op_input); // op_index = 0
OpDescPtr op_kernel = CreateOpDesc("square", "Square");
op_kernel->AddInputDesc(tensor);
op_kernel->AddOutputDesc(tensor);
op_kernel->SetInputOffset({1024});
op_kernel->SetOutputOffset({1024});
NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
op_memcpy->AddInputDesc(tensor);
op_memcpy->AddOutputDesc(tensor);
op_memcpy->SetInputOffset({1024});
op_memcpy->SetOutputOffset({5120});
NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
op_output->AddInputDesc(tensor);
op_output->SetInputOffset({5120});
op_output->SetSrcName( { "memcpy" } );
op_output->SetSrcIndex( { 0 } );
NodePtr node_output = graph->AddNode(op_output); // op_index = 3
domi::TaskDef *task_def1 = model_task_def->add_task();
task_def1->set_stream_id(0);
task_def1->set_type(RT_MODEL_TASK_KERNEL);
domi::KernelDef *kernel_def = task_def1->mutable_kernel();
kernel_def->set_stub_func("stub_func");
kernel_def->set_args_size(64);
string args(64, '1');
kernel_def->set_args(args.data(), 64);
domi::KernelContext *context = kernel_def->mutable_context();
context->set_op_index(1);
context->set_kernel_type(2); // ccKernelType::TE
uint16_t args_offset[9] = {0};
context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
domi::TaskDef *task_def2 = model_task_def->add_task();
task_def2->set_stream_id(0);
task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
memcpy_async->set_src(1024);
memcpy_async->set_dst(5120);
memcpy_async->set_dst_max(512);
memcpy_async->set_count(1);
memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
memcpy_async->set_op_index(2);
EXPECT_EQ(model.Assign(ge_model), SUCCESS);
ProfilingManager::Instance().is_load_profiling_ = true;
EXPECT_EQ(model.Init(), SUCCESS);
ProfilingManager::Instance().is_load_profiling_ = false;
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 1);
EXPECT_EQ(model.task_list_.size(), 2);
EXPECT_EQ(model.task_list_[0]->UpdateArgs(), SUCCESS);
EXPECT_EQ(model.task_list_[1]->UpdateArgs(), SUCCESS);
vector<string> out_shape_info;
model.GetModelAttr(out_shape_info);
vector<InputOutputDescInfo> input_descs;
vector<InputOutputDescInfo> output_descs;
EXPECT_EQ(model.GetInputOutputDescInfo(input_descs, output_descs), SUCCESS);
int32_t virtual_addr = 0;
const vector<void *> inputs = { &virtual_addr };
const vector<void *> outputs = { &virtual_addr };
EXPECT_EQ(model.UpdateKnownNodeArgs(inputs, outputs), SUCCESS);
}
TEST_F(UtestDavinciModel, Init_variable_op) {
DavinciModel model(0, g_local_call_back);
model.ge_model_ = make_shared<GeModel>();
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr var1 = CreateOpDesc("var1", VARIABLE);
var1->AddInputDesc(tensor);
var1->AddOutputDesc(tensor);
var1->SetInputOffset({1024});
var1->SetOutputOffset({1024});
AttrUtils::SetBool(var1, VAR_ATTR_VAR_IS_BROADCAST, true);
graph->AddNode(var1);
OpDescPtr var2 = CreateOpDesc(NODE_NAME_GLOBAL_STEP, VARIABLE);
var2->AddInputDesc(tensor);
var2->AddOutputDesc(tensor);
var2->SetInputOffset({1024});
var2->SetOutputOffset({1024});
graph->AddNode(var2);
EXPECT_EQ(model.InitNodes(graph), SUCCESS);
EXPECT_EQ(model.ReturnNoOutput(1), SUCCESS);
EXPECT_EQ(model.SyncVarData(), SUCCESS);
OutputData output_data;
EXPECT_FALSE(model.has_output_node_);
EXPECT_EQ(model.CopyOutputData(1, output_data, RT_MEMCPY_DEVICE_TO_HOST), SUCCESS);
EXPECT_EQ(model.ReturnResult(1, false, true, &output_data), INTERNAL_ERROR);
}
TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ1) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>();
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
OpDescPtr op_output = CreateOpDesc("output_ascend_mbatch_batch_1", NETOUTPUT);
op_output->AddInputDesc(tensor);
op_output->SetInputOffset({1024});
NodePtr node_output = graph->AddNode(op_output);
EXPECT_EQ(model.InitRealSizeAndShapeInfo(graph, node_output), SUCCESS);
}
TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ2) {
DavinciModel model(0, nullptr);
ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
OpDescPtr data1 = CreateOpDesc("data1", DATA);
GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
data1->AddInputDesc(shape_desc);
data1->AddOutputDesc(shape_desc);
NodePtr data1_node = graph->AddNode(data1);
OpDescPtr case_node = CreateOpDesc("case1", CASE);
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
case_node->AddInputDesc(tensor);
case_node->AddOutputDesc(tensor);
NodePtr case1_node = graph->AddNode(case_node);
OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
output->AddInputDesc(tensor);
output->SetSrcName( { "case1" } );
output->SetSrcIndex( { 0 } );
NodePtr output_node = graph->AddNode(output);
GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), case1_node->GetInDataAnchor(0));
GraphUtils::AddEdge(case1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
(void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1;2;4;8");
(void)AttrUtils::SetBool(case_node, ATTR_INSERT_BY_MBATCH, true);
model.is_getnext_sink_dynamic_ = false;
model.is_online_infer_dynamic_ = true;
auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
// GetGearAndRealOutShapeInfo without ATTR_NAME_DYNAMIC_OUTPUT_DIMS
EXPECT_EQ(ret, SUCCESS);
vector<string> dynamic_output_dims = {"0,0,1,1,0,2,2,0,4,3,0,8"};
(void)AttrUtils::SetListStr(output_node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims);
ret = model.InitRealSizeAndShapeInfo(graph, output_node);
EXPECT_EQ(ret, SUCCESS);
}
TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ3) {
DavinciModel model(0, nullptr);
ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
OpDescPtr data1 = CreateOpDesc("data1", DATA);
GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
data1->AddInputDesc(shape_desc);
data1->AddOutputDesc(shape_desc);
NodePtr data1_node = graph->AddNode(data1);
OpDescPtr shape_node = CreateOpDesc("ascend_mbatch_get_dynamic_dims_node", GETDYNAMICDIMS);
GeTensorDesc in_tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
GeTensorDesc out_tensor(GeShape({4,3}), FORMAT_NCHW, DT_FLOAT);
shape_node->AddInputDesc(in_tensor);
shape_node->AddOutputDesc(out_tensor);
NodePtr get_dynamic_dims_node = graph->AddNode(shape_node);
OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
output->AddInputDesc(tensor);
output->SetSrcName( { "data1", "ascend_mbatch_get_dynamic_dims_node" } );
output->SetSrcIndex( { 0, 1 } );
NodePtr output_node = graph->AddNode(output);
GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
GraphUtils::AddEdge(get_dynamic_dims_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(1));
(void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1,3;;4,3;,3");
model.is_getnext_sink_dynamic_ = true;
model.is_online_infer_dynamic_ = false;
auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
EXPECT_EQ(ret, SUCCESS);
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 4;
ret = model.InitRealSizeAndShapeInfo(graph, output_node);
EXPECT_EQ(ret, SUCCESS);
}
TEST_F(UtestDavinciModel, init_data_aipp_info) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_desc = CreateOpDesc("data", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc);
GeAttrValue::NAMED_ATTRS aipp_attr;
aipp_attr.SetAttr("aipp_mode", GeAttrValue::CreateFrom<GeAttrValue::INT>(domi::AippOpParams::dynamic));
aipp_attr.SetAttr("related_input_rank", GeAttrValue::CreateFrom<GeAttrValue::INT>(0));
aipp_attr.SetAttr("max_src_image_size", GeAttrValue::CreateFrom<GeAttrValue::INT>(2048));
aipp_attr.SetAttr("support_rotation", GeAttrValue::CreateFrom<GeAttrValue::INT>(1));
EXPECT_TRUE(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr));
AippConfigInfo aipp_info;
EXPECT_EQ(model.GetAippInfo(0, aipp_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
EXPECT_EQ(model.InitNodes(graph), SUCCESS);
EXPECT_EQ(model.GetAippInfo(0, aipp_info), SUCCESS);
EXPECT_EQ(aipp_info.aipp_mode, domi::AippOpParams::dynamic);
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(model.op_list_.size(), 1);
}
TEST_F(UtestDavinciModel, init_data_aipp_static) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_desc = CreateOpDesc("data", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc);
AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp");
InputAippType aipp_type;
size_t aipp_index = 0;
EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
EXPECT_EQ(model.InitNodes(graph), SUCCESS);
EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
EXPECT_EQ(aipp_type, DATA_WITH_STATIC_AIPP);
EXPECT_EQ(aipp_index, 0xFFFFFFFFu);
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(model.op_list_.size(), 1);
}
TEST_F(UtestDavinciModel, init_data_aipp_dynamic) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_desc = CreateOpDesc("data", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index 0
AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
InputAippType aipp_type;
size_t aipp_index = 0;
EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
EXPECT_EQ(model.InitNodes(graph), SUCCESS);
EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(model.op_list_.size(), 1);
}
TEST_F(UtestDavinciModel, init_data_aipp_releated) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
{
OpDescPtr op_desc = CreateOpDesc("data", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index 0
AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
}
{
OpDescPtr op_desc = CreateOpDesc("releated_aipp", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index 1
}
InputAippType aipp_type;
size_t aipp_index = 0;
EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
EXPECT_EQ(model.InitNodes(graph), SUCCESS);
EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
EXPECT_EQ(aipp_type, DATA_WITH_DYNAMIC_AIPP);
EXPECT_EQ(aipp_index, 1);
EXPECT_EQ(model.input_addrs_list_.size(), 2);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(model.op_list_.size(), 2);
}
TEST_F(UtestDavinciModel, init_data_aipp_dynamic_conf) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_desc = CreateOpDesc("data", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index 0
AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf");
InputAippType aipp_type;
size_t aipp_index = 0;
EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
EXPECT_EQ(model.InitNodes(graph), SUCCESS);
EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
EXPECT_EQ(aipp_type, DYNAMIC_AIPP_NODE);
EXPECT_EQ(aipp_index, 0xFFFFFFFFU);
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(model.op_list_.size(), 1);
}
TEST_F(UtestDavinciModel, init_data_aipp_dynamic_invalid) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_desc = CreateOpDesc("data", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index 0
AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_invalid");
InputAippType aipp_type;
size_t aipp_index = 0;
EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(model.op_list_.size(), 1);
}
TEST_F(UtestDavinciModel, init_data_aipp_input_info_empty) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_desc = CreateOpDesc("data", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index 0
vector<string> inputs = {};
AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
vector<string> outputs = {};
AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
OriginInputInfo orig_input_info;
EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
EXPECT_EQ(model.InitNodes(graph), SUCCESS);
EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(model.op_list_.size(), 1);
}
TEST_F(UtestDavinciModel, init_data_aipp_input_info_normal) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_desc = CreateOpDesc("data", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index 0
vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
OriginInputInfo orig_input_info;
EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
EXPECT_EQ(model.InitNodes(graph), SUCCESS);
EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(model.op_list_.size(), 1);
}
TEST_F(UtestDavinciModel, init_data_aipp_input_info_invalid) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_desc = CreateOpDesc("data", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index 0
vector<string> inputs = { "NCHW:DT_FLOAT:TensorName" }; // Invalid
AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
OriginInputInfo orig_input_info;
EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(model.op_list_.size(), 1);
}
TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
model.runtime_param_.mem_base = (uint8_t *)0x08000000;
model.runtime_param_.mem_size = 5120000;
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
TensorUtils::SetSize(tensor, 512);
OpDescPtr op_desc = CreateOpDesc("data", DATA);
op_desc->AddInputDesc(tensor);
op_desc->AddOutputDesc(tensor);
op_desc->SetInputOffset({1024});
op_desc->SetOutputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index 0
vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
vector<InputOutputDims> input_dims;
vector<InputOutputDims> output_dims;
EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), ACL_ERROR_GE_AIPP_NOT_EXIST);
EXPECT_EQ(model.InitNodes(graph), SUCCESS);
EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), SUCCESS);
EXPECT_EQ(input_dims.size(), 1);
EXPECT_EQ(output_dims.size(), 1);
EXPECT_EQ(model.input_addrs_list_.size(), 1);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(model.op_list_.size(), 1);
}
// test label_set_task Init
TEST_F(UtestDavinciModel, label_task_success) {
DavinciModel model(0, nullptr);
ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
GeModelPtr ge_model = make_shared<GeModel>();
ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
ge_model->SetModelTaskDef(model_task_def);
GeTensorDesc tensor(GeShape(), FORMAT_ND, DT_INT32);
TensorUtils::SetSize(tensor, 64);
{
OpDescPtr op_desc = CreateOpDesc("label_switch", LABELSWITCHBYINDEX);
op_desc->AddInputDesc(tensor);
op_desc->SetInputOffset({1024});
NodePtr node = graph->AddNode(op_desc); // op_index = 0
EXPECT_TRUE(AttrUtils::SetListInt(op_desc, ATTR_NAME_LABEL_SWITCH_LIST, {0, 1}));
domi::TaskDef *task_def1 = model_task_def->add_task();
task_def1->set_stream_id(0);
task_def1->set_type(RT_MODEL_TASK_STREAM_LABEL_SWITCH_BY_INDEX);
domi::LabelSwitchByIndexDef *label_task_def = task_def1->mutable_label_switch_by_index();
label_task_def->set_op_index(op_desc->GetId());
label_task_def->set_label_max(2);
}
{
OpDescPtr op_desc = CreateOpDesc("label_then", LABELSET);
NodePtr node = graph->AddNode(op_desc); // op_index = 1
EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 1));
domi::TaskDef *task_def1 = model_task_def->add_task();
task_def1->set_stream_id(0);
task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
label_task_def->set_op_index(op_desc->GetId());
}
{
OpDescPtr op_desc = CreateOpDesc("label_goto", LABELGOTOEX);
NodePtr node = graph->AddNode(op_desc); // op_index = 2
EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
domi::TaskDef *task_def2 = model_task_def->add_task();
task_def2->set_stream_id(0);
task_def2->set_type(RT_MODEL_TASK_STREAM_LABEL_GOTO);
domi::LabelGotoExDef *label_task_def = task_def2->mutable_label_goto_ex();
label_task_def->set_op_index(op_desc->GetId());
}
{
OpDescPtr op_desc = CreateOpDesc("label_else", LABELSET);
NodePtr node = graph->AddNode(op_desc); // op_index = 3
EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 0));
domi::TaskDef *task_def1 = model_task_def->add_task();
task_def1->set_stream_id(0);
task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
label_task_def->set_op_index(op_desc->GetId());
}
{
OpDescPtr op_desc = CreateOpDesc("label_leave", LABELSET);
NodePtr node = graph->AddNode(op_desc); // op_index = 4
EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
domi::TaskDef *task_def1 = model_task_def->add_task();
task_def1->set_stream_id(0);
task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
label_task_def->set_op_index(op_desc->GetId());
}
EXPECT_TRUE(AttrUtils::SetInt(ge_model, ATTR_MODEL_LABEL_NUM, 3));
EXPECT_EQ(model.Assign(ge_model), SUCCESS);
EXPECT_EQ(model.Init(), SUCCESS);
EXPECT_EQ(model.input_addrs_list_.size(), 0);
EXPECT_EQ(model.output_addrs_list_.size(), 0);
EXPECT_EQ(model.task_list_.size(), 5);
}
TEST_F(UtestDavinciModel, LoadWithQueue_fail_with_diff_args) {
DavinciModel model(0, nullptr);
model.ge_model_ = make_shared<GeModel>();
model.input_queue_ids_.emplace_back(0);
EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
EXPECT_EQ(model.input_data_info_.size(), 0);
ZeroCopyOffset zero_copy_offset;
model.input_data_info_[0] = zero_copy_offset;
model.output_queue_ids_.emplace_back(0);
EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
EXPECT_EQ(model.output_data_info_.size(), 0);
model.output_data_info_[0] = zero_copy_offset;
EXPECT_EQ(model.LoadWithQueue(), INTERNAL_ERROR);
EXPECT_EQ(model.active_stream_list_.size(), 0);
}
TEST_F(UtestDavinciModel, Sink_model_profile) {
ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
ProfileInfo profile;
profile.fusion_info.op_name = "relu";
DavinciModel model(0, nullptr);
model.profile_list_.emplace_back(profile);
std::map<std::string, std::pair<uint32_t, uint32_t>> op_info;
op_info["relu"] = std::pair<uint32_t, uint32_t>(1, 1);
model.profiler_report_op_info_ = op_info;
model.SinkModelProfile();
}
TEST_F(UtestDavinciModel, Sink_time_profile) {
ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
DavinciModel model(0, nullptr);
InputData current_data;
model.SinkTimeProfile(current_data);
}
} // namespace ge