You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/third_party/fwkacllib/inc/ops/audio_ops.h

163 lines
4.7 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*!
* \file audio_ops.h
* \brief
*/
#ifndef OPS_BUILT_IN_OP_PROTO_INC_AUDIO_OPS_H_
#define OPS_BUILT_IN_OP_PROTO_INC_AUDIO_OPS_H_
#include "graph/operator_reg.h"
namespace ge {
/**
*@brief Mel-Frequency Cepstral Coefficient (MFCC) calculation consists of
taking the DCT-II of a log-magnitude mel-scale spectrogram . \n
*@par Inputs:
*Input "spectrogram" is a 3D tensor. Input "sample_rate" is a scalar.
* @li spectrogram: A 3D float tensor.
* @li sample_rate: The MFCC sample rate . \n
*@par Attributes:
*@li upper_frequency_limit: The highest frequency for calculation.
*@li lower_frequency_limit: The lowest frequency for calculation.
*@li filterbank_channel_count: Resolution of the Mel bank.
*@li dct_coefficient_count: Number of output channels to produce
per time slice . \n
*@par Outputs:
*y: A Tensor of type float32 . \n
*@attention Constraints:
*Mfcc runs on the Ascend AI CPU, which delivers poor performance.
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator Mfcc . \n
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(Mfcc)
.INPUT(spectrogram, TensorType({DT_FLOAT}))
.INPUT(sample_rate, TensorType({DT_INT32}))
.OUTPUT(y, TensorType({DT_FLOAT}))
.ATTR(upper_frequency_limit, Float, 4000)
.ATTR(lower_frequency_limit, Float, 20)
.ATTR(filterbank_channel_count, Int, 40)
.ATTR(dct_coefficient_count, Int, 13)
.OP_END_FACTORY_REG(Mfcc)
/**
*@brief Decodes and generates spectrogram using wav float tensor . \n
*@par Inputs:
*Input "x" is a 2D matrix.
* x: A float tensor. Float representation of audio data . \n
*@par Attributes:
*@li window_size: Size of the spectrogram window.
*@li stride: Size of the spectrogram stride.
*@li magnitude_squared: If true, uses squared magnitude . \n
*@par Outputs:
*spectrogram: A 3D float Tensor . \n
*@attention Constraints:
*AudioSpectrogram runs on the Ascend AI CPU, which delivers
poor performance . \n
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator AudioSpectrogram . \n
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(AudioSpectrogram)
.INPUT(x, TensorType({DT_FLOAT}))
.OUTPUT(spectrogram, TensorType({DT_FLOAT}))
.REQUIRED_ATTR(window_size, Int)
.REQUIRED_ATTR(stride, Int)
.ATTR(magnitude_squared, Bool, false)
.OP_END_FACTORY_REG(AudioSpectrogram)
/**
*@brief Decodes a 16-bit WAV file into a float tensor . \n
*@par Inputs:
*contents: A Tensor of type string. The WAV-encoded audio, usually from a file . \n
*@par Attributes:
*@li desired_channels: An optional int. Defaults to "-1".
Number of sample channels wanted.
*@li desired_samples: An optional int. Defaults to "-1".
Length of audio requested . \n
*@par Outputs:
*@li *audio: A Tensor of type float32.
*@li *sample_rate: A Tensor of type int32 . \n
*@attention Constraints:
*DecodeWav runs on the Ascend AI CPU, which delivers poor performance.
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator DecodeWav . \n
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(DecodeWav)
.INPUT(contents, TensorType({DT_STRING}))
.OUTPUT(audio, TensorType({DT_FLOAT}))
.OUTPUT(sample_rate, TensorType({DT_INT32}))
.ATTR(desired_channels, Int, -1)
.ATTR(desired_samples, Int, -1)
.OP_END_FACTORY_REG(DecodeWav)
/**
*@brief Encode audio data using the WAV file format . \n
*@par Inputs:
*Including:
* @li audio: A Tensor of type DT_FLOAT.
* @li sample_rate: A Tensor of type DT_INT32 . \n
*@par Outputs:
*contents: A Tensor of type DT_STRING . \n
*@attention Constraints:
*EncodeWav runs on the Ascend AI CPU, which delivers poor performance.
*@par Third-party framework compatibility
*Compatible with tensorflow Operator EncodeWav . \n
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(EncodeWav)
.INPUT(audio, TensorType({DT_FLOAT}))
.INPUT(sample_rate, TensorType({DT_INT32}))
.OUTPUT(contents, TensorType({DT_STRING}))
.OP_END_FACTORY_REG(EncodeWav)
} // namespace ge
#endif // OPS_BUILT_IN_OP_PROTO_INC_AUDIO_OPS_H_