You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/hybrid/executor/subgraph_executor.cc

418 lines
17 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "hybrid/executor/subgraph_executor.h"
#include "graph/ge_context.h"
#include "hybrid/executor/worker/task_compile_engine.h"
#include "hybrid/executor/worker/execution_engine.h"
#include "hybrid/node_executor/node_executor.h"
namespace ge {
namespace hybrid {
namespace {
constexpr int kDefaultThreadNum = 4;
constexpr int kDataInputIndex = 0;
}
SubgraphExecutor::SubgraphExecutor(const GraphItem *graph_item, GraphExecutionContext *context, bool force_infer_shape)
: graph_item_(graph_item),
context_(context),
force_infer_shape_(force_infer_shape),
pre_run_pool_(kDefaultThreadNum) {
}
SubgraphExecutor::~SubgraphExecutor() {
GELOGD("[%s] SubgraphExecutor destroyed.", graph_item_->GetName().c_str());
}
Status SubgraphExecutor::Init(const std::vector<TensorValue> &inputs,
const std::vector<ConstGeTensorDescPtr> &input_desc) {
subgraph_context_.reset(new(std::nothrow)SubgraphContext(graph_item_));
GE_CHECK_NOTNULL(subgraph_context_);
GE_CHK_STATUS_RET(subgraph_context_->Init(), "[%s] Failed to init subgraph context.", graph_item_->GetName().c_str());
shape_inference_engine_.reset(new(std::nothrow) ShapeInferenceEngine(context_, subgraph_context_.get()));
GE_CHECK_NOTNULL(shape_inference_engine_);
if (graph_item_->IsDynamic()) {
GE_CHK_STATUS_RET(InitInputsForUnknownShape(inputs, input_desc),
"[%s] Failed to set inputs.",
graph_item_->GetName().c_str());
} else {
GE_CHK_STATUS_RET(InitInputsForKnownShape(inputs),
"[%s] Failed to init subgraph executor for known shape subgraph.",
graph_item_->GetName().c_str());
}
return SUCCESS;
}
Status SubgraphExecutor::InitInputsForUnknownShape(const std::vector<TensorValue> &inputs,
const std::vector<ConstGeTensorDescPtr> &input_desc) {
// Number of inputs of parent node should be greater or equal than that of subgraph
auto input_nodes = graph_item_->GetInputNodes();
if (inputs.size() < input_nodes.size()) {
GELOGE(INTERNAL_ERROR, "[%s] Number of inputs [%zu] is not sufficient for subgraph which needs [%zu] inputs.",
graph_item_->GetName().c_str(), inputs.size(), input_nodes.size());
return INTERNAL_ERROR;
}
for (size_t i = 0; i < input_nodes.size(); ++i) {
auto &input_node = input_nodes[i];
if (input_node == nullptr) {
GELOGD("[%s] Input[%zu] is not needed by subgraph, skip it.", graph_item_->GetName().c_str(), i);
continue;
}
auto &input_tensor = inputs[i];
GELOGD("[%s] Set input tensor[%zu] to inputs with index = %d, tensor = %s",
graph_item_->GetName().c_str(),
i,
input_node->input_start,
input_tensor.DebugString().c_str());
GE_CHK_STATUS_RET(subgraph_context_->SetInput(*input_node, kDataInputIndex, input_tensor),
"[%s] Failed to set input tensor[%zu]",
graph_item_->GetName().c_str(),
i);
if (force_infer_shape_ || input_node->is_dynamic) {
GELOGD("[%s] Start to update input[%zu] for subgraph data node.", graph_item_->GetName().c_str(), i);
GE_CHECK_LE(i + 1, input_desc.size());
const auto &tensor_desc = input_desc[i];
GE_CHECK_NOTNULL(tensor_desc);
auto node_state = subgraph_context_->GetOrCreateNodeState(input_node);
GE_CHECK_NOTNULL(node_state);
node_state->GetShapeInferenceState().UpdateInputShape(0, *tensor_desc);
}
}
GELOGD("[%s] Done setting inputs.", graph_item_->GetName().c_str());
return SUCCESS;
}
Status SubgraphExecutor::InitInputsForKnownShape(const std::vector<TensorValue> &inputs) {
auto &input_index_mapping = graph_item_->GetInputIndexMapping();
for (size_t i = 0; i < input_index_mapping.size(); ++i) {
auto &parent_input_index = input_index_mapping[i];
if (static_cast<size_t>(parent_input_index) >= inputs.size()) {
GELOGE(INTERNAL_ERROR,
"[%s] Number of inputs [%zu] is not sufficient for subgraph which needs at lease [%d] inputs",
graph_item_->GetName().c_str(),
inputs.size(),
parent_input_index + 1);
return INTERNAL_ERROR;
}
auto &input_tensor = inputs[parent_input_index];
subgraph_context_->SetInput(static_cast<int>(i), input_tensor);
GELOGD("[%s] Set input tensor[%zu] with inputs with index = %d, tensor = %s",
graph_item_->GetName().c_str(),
i,
parent_input_index,
input_tensor.DebugString().c_str());
}
return SUCCESS;
}
Status SubgraphExecutor::ExecuteAsync(const std::vector<TensorValue> &inputs,
const std::vector<ConstGeTensorDescPtr> &input_desc) {
GELOGD("[%s] is dynamic = %s", graph_item_->GetName().c_str(), graph_item_->IsDynamic() ? "true" : "false");
GE_CHK_STATUS_RET(Init(inputs, input_desc), "[%s] Failed to init executor.", graph_item_->GetName().c_str());
if (!graph_item_->IsDynamic()) {
return ExecuteAsyncForKnownShape(inputs);
}
GE_CHK_STATUS_RET(ScheduleTasks(), "[%s] Failed to execute tasks.", graph_item_->GetName().c_str());
GELOGD("[%s] Done executing subgraph successfully.", graph_item_->GetName().c_str());
return SUCCESS;
}
Status SubgraphExecutor::ExecuteAsyncForKnownShape(const std::vector<TensorValue> &inputs) {
GELOGD("[%s] subgraph is not dynamic.", graph_item_->GetName().c_str());
if (graph_item_->GetAllNodes().size() != 1) {
GELOGE(INTERNAL_ERROR,
"[%s] Invalid known shape subgraph. node size = %zu",
graph_item_->GetName().c_str(),
graph_item_->GetAllNodes().size());
return INTERNAL_ERROR;
}
auto node_item = graph_item_->GetAllNodes()[0];
GE_CHECK_NOTNULL(node_item);
auto node_state = subgraph_context_->GetOrCreateNodeState(node_item);
GE_CHECK_NOTNULL(node_state);
node_state->SetKernelTask(node_item->kernel_task);
known_shape_task_context_ = TaskContext::Create(*node_item, context_, subgraph_context_.get());
GE_CHECK_NOTNULL(known_shape_task_context_);
GE_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, known_shape_task_context_, *context_),
"[%s] Failed to execute node [%s] for known subgraph.",
graph_item_->GetName().c_str(),
known_shape_task_context_->GetNodeName());
GELOGD("[%s] Done execute non-dynamic subgraph successfully.", graph_item_->GetName().c_str());
return SUCCESS;
}
Status SubgraphExecutor::ExecuteAsync(TaskContext &task_context) {
std::vector<TensorValue> inputs;
std::vector<ConstGeTensorDescPtr> input_desc;
for (int i = 0; i < task_context.NumInputs(); ++i) {
auto tensor = task_context.GetInput(i);
GE_CHECK_NOTNULL(tensor);
inputs.emplace_back(*tensor);
input_desc.emplace_back(task_context.GetInputDesc(i));
}
GE_CHK_STATUS_RET(ExecuteAsync(inputs, input_desc),
"[%s] Failed to execute subgraph.",
graph_item_->GetName().c_str());
GE_CHK_STATUS_RET(SetOutputsToParentNode(task_context),
"[%s] Failed to set output shapes to parent node.",
graph_item_->GetName().c_str());
return SUCCESS;
}
Status SubgraphExecutor::PrepareNodes() {
GELOGD("[%s] Start to prepare nodes. force infer shape = %s.",
graph_item_->GetName().c_str(),
force_infer_shape_ ? "true" : "false");
auto &all_nodes = graph_item_->GetAllNodes();
for (auto all_node : all_nodes) {
auto &node_item = *all_node;
// for while op
if (force_infer_shape_ && !node_item.is_dynamic) {
GELOGD("[%s] Force infer shape is set, updating node to dynamic.", node_item.NodeName().c_str());
auto &mutable_node_item = const_cast<NodeItem &>(node_item);
mutable_node_item.SetToDynamic();
}
GELOGD("[%s] Start to prepare node [%s].", graph_item_->GetName().c_str(), node_item.NodeName().c_str());
auto node_state = subgraph_context_->GetOrCreateNodeState(&node_item);
GE_CHECK_NOTNULL(node_state);
auto p_node_state = node_state.get();
if (node_item.node_type == NETOUTPUT) {
// Wait for all inputs become valid
// after PrepareNodes returned. all output tensors and shapes are valid
GE_CHK_STATUS_RET_NOLOG(p_node_state->GetShapeInferenceState().AwaitShapesReady(*context_));
GE_CHK_STATUS_RET_NOLOG(p_node_state->AwaitInputTensors(*context_));
continue;
}
// only do shape inference and compilation for nodes with dynamic shapes.
if (node_item.is_dynamic) {
auto prepare_future = pre_run_pool_.commit([this, p_node_state]() -> Status {
GetContext().SetSessionId(context_->session_id);
GE_CHK_STATUS_RET_NOLOG(InferShape(shape_inference_engine_.get(), *p_node_state));
return PrepareForExecution(context_, *p_node_state);
});
p_node_state->SetPrepareFuture(std::move(prepare_future));
} else {
GELOGD("[%s] Skipping shape inference and compilation for node with static shape.", node_item.NodeName().c_str());
if (node_item.kernel_task == nullptr) {
GELOGW("[%s] Node of static shape got no task.", node_item.NodeName().c_str());
GE_CHK_STATUS_RET(TaskCompileEngine::Compile(*p_node_state, context_),
"[%s] Failed to create task.", p_node_state->GetName().c_str());
} else {
node_state->SetKernelTask(node_item.kernel_task);
}
}
if (!ready_queue_.Push(p_node_state)) {
GELOGE(INTERNAL_ERROR, "[%s] Error occurs while launching tasks. quit from preparing nodes.",
graph_item_->GetName().c_str());
return INTERNAL_ERROR;
}
GELOGD("[%s] Push node [%s] to queue.", graph_item_->GetName().c_str(), node_item.NodeName().c_str());
}
return SUCCESS;
}
Status SubgraphExecutor::InferShape(ShapeInferenceEngine *shape_inference_engine, NodeState &node_state) {
const auto &node_item = *node_state.GetNodeItem();
GE_CHK_STATUS_RET(shape_inference_engine->InferShape(node_state),
"[%s] Failed to InferShape.", node_state.GetName().c_str());
GE_CHK_STATUS_RET(shape_inference_engine->PropagateOutputShapes(node_item),
"[%s] Failed to PropagateOutputShapes.", node_state.GetName().c_str());
return SUCCESS;
}
Status SubgraphExecutor::PrepareForExecution(GraphExecutionContext *ctx, NodeState &node_state) {
auto &node_item = *node_state.GetNodeItem();
if (node_item.kernel_task == nullptr) {
GE_CHK_STATUS_RET(TaskCompileEngine::Compile(node_state, ctx),
"Failed to create task for node[%s]", node_state.GetName().c_str());
} else {
node_state.SetKernelTask(node_item.kernel_task);
}
return SUCCESS;
}
Status SubgraphExecutor::LaunchTasks() {
while (true) {
NodeState *node_state = nullptr;
if (!ready_queue_.Pop(node_state)) {
GELOGE(INTERNAL_ERROR, "[%s] Failed to pop node.", graph_item_->GetName().c_str());
return INTERNAL_ERROR;
}
if (node_state == nullptr) {
GELOGD("[%s] Got EOF from queue.", graph_item_->GetName().c_str());
return SUCCESS;
}
GE_CHK_STATUS_RET_NOLOG(node_state->WaitForPrepareDone());
GELOGD("[%s] Start to execute.", node_state->GetName().c_str());
auto task_context = TaskContext::Create(*node_state->GetNodeItem(), context_, subgraph_context_.get());
GE_CHECK_NOTNULL(task_context);
task_context->SetForceInferShape(force_infer_shape_);
auto shared_task_context = std::shared_ptr<TaskContext>(task_context.release());
GE_CHK_STATUS_RET(ExecutionEngine::ExecuteAsync(*node_state, shared_task_context, *context_),
"[%s] Execute node failed.",
node_state->GetName().c_str());
GELOGD("[%s] Done executing node successfully.", node_state->GetName().c_str());
}
}
Status SubgraphExecutor::ScheduleTasks() {
GELOGD("[%s] Start to schedule prepare workers.", graph_item_->GetName().c_str());
auto prepare_future = std::async(std::launch::async, [&]() -> Status {
GetContext().SetSessionId(context_->session_id);
auto ret = PrepareNodes();
ready_queue_.Push(nullptr);
return ret;
});
GELOGD("[%s] Start to execute subgraph.", graph_item_->GetName().c_str());
auto ret = LaunchTasks();
if (ret != SUCCESS) {
GELOGE(ret, "[%s] Failed to execute subgraph.", graph_item_->GetName().c_str());
subgraph_context_->OnError(ret);
context_->SetErrorCode(ret);
ready_queue_.Stop();
prepare_future.wait();
return ret;
}
GE_CHK_STATUS_RET(prepare_future.get(),
"[%s] Error occurred in task preparation.",
graph_item_->GetName().c_str());
GELOGD("[%s] Done launching all tasks successfully.", graph_item_->GetName().c_str());
return SUCCESS;
}
Status SubgraphExecutor::GetOutputs(vector<TensorValue> &outputs) {
return subgraph_context_->GetOutputs(outputs);
}
Status SubgraphExecutor::GetOutputs(vector<TensorValue> &outputs, std::vector<ConstGeTensorDescPtr> &output_desc) {
GE_CHK_STATUS_RET(GetOutputs(outputs), "[%s] Failed to get output tensors.", graph_item_->GetName().c_str());
// copy output data from op to designated position
GE_CHK_STATUS_RET(graph_item_->GetOutputDescList(output_desc),
"[%s] Failed to get output tensor desc.",
graph_item_->GetName().c_str());
if (outputs.size() != output_desc.size()) {
GELOGE(INTERNAL_ERROR,
"Number of output tensors(%zu) mismatch number of output tensor desc(%zu).",
outputs.size(),
output_desc.size());
return INTERNAL_ERROR;
}
return SUCCESS;
}
Status SubgraphExecutor::Synchronize() {
GELOGD("[%s] Synchronize start.", graph_item_->GetName().c_str());
GE_CHK_RT_RET(rtStreamSynchronize(context_->stream));
GELOGD("[%s] Done synchronizing successfully.", graph_item_->GetName().c_str());
return SUCCESS;
}
Status SubgraphExecutor::SetOutputsToParentNode(TaskContext &task_context) {
// get output tensors and tensor desc list
std::vector<TensorValue> outputs;
std::vector<ConstGeTensorDescPtr> output_desc_list;
GE_CHK_STATUS_RET(subgraph_context_->GetOutputs(outputs),
"[%s] Failed to get output tensors.",
graph_item_->GetName().c_str());
GE_CHK_STATUS_RET(graph_item_->GetOutputDescList(output_desc_list),
"[%s] Failed to get output tensor desc.",
graph_item_->GetName().c_str());
if (outputs.size() != output_desc_list.size()) {
GELOGE(INTERNAL_ERROR, "[%s] num output tensors = %zu, num output tensor desc = %zu",
graph_item_->GetName().c_str(),
outputs.size(),
output_desc_list.size());
return INTERNAL_ERROR;
}
// mapping to parent task context
for (size_t i = 0; i < outputs.size(); ++i) {
int parent_output_index = graph_item_->GetParentOutputIndex(i);
GE_CHECK_GE(parent_output_index, 0);
// update tensor
GELOGD("[%s] Updating output[%zu] to parent output[%d]",
graph_item_->GetName().c_str(),
i,
parent_output_index);
GELOGD("[%s] Updating output tensor, index = %d, tensor = %s",
graph_item_->GetName().c_str(),
parent_output_index,
outputs[i].DebugString().c_str());
GE_CHK_STATUS_RET(task_context.SetOutput(parent_output_index, outputs[i]));
// updating shapes. dynamic format/dtype is not supported.
// It should be noted that even the subgraph is of known shape, it is also necessary to update parent output desc,
// for instance, IfOp may have two known-shaped subgraphs of different output shapes
const auto &output_desc = output_desc_list[i];
auto parent_output_desc = task_context.MutableOutputDesc(parent_output_index);
GE_CHECK_NOTNULL(parent_output_desc);
GELOGD("[%s] Updating output shape[%d] from [%s] to [%s]",
graph_item_->GetName().c_str(),
parent_output_index,
parent_output_desc->MutableShape().ToString().c_str(),
output_desc->GetShape().ToString().c_str());
parent_output_desc->SetShape(output_desc->GetShape());
GELOGD("[%s] Updating output original shape[%d] from [%s] to [%s]",
graph_item_->GetName().c_str(),
parent_output_index,
parent_output_desc->GetOriginShape().ToString().c_str(),
output_desc->GetOriginShape().ToString().c_str());
parent_output_desc->SetOriginShape(output_desc->GetOriginShape());
}
return SUCCESS;
}
} // namespace hybrid
} // namespace ge