You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2521 lines
98 KiB
2521 lines
98 KiB
/**
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef GE_OP_TRAINING_OPS_H
|
|
#define GE_OP_TRAINING_OPS_H
|
|
|
|
#include "graph/operator_reg.h"
|
|
namespace ge {
|
|
/**
|
|
*@brief Updates "var" according to the AdaMax algorithm.
|
|
* t-1 mean previous period.
|
|
* m_t <- beta1 * m{t-1} + (1 - beta1) * grad\n
|
|
* v_t <- max(beta2 * v{t-1}, abs(grad))\n
|
|
* var <- var - lr / (1 - beta1^t) * m_t / (v_t + epsilon)
|
|
*
|
|
*@attention Constraints:
|
|
* the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Must be one of the following types: TensorType::NumberType().
|
|
* Should be from a Variable().
|
|
*@li m: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li v: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li beta1_power: A scalar. Has the same type as "var".
|
|
*@li lr: learning_rate. A scalar. Has the same type as "var".
|
|
*@li beta1: A scalar. Has the same type as "var".
|
|
*@li beta2: A scalar. Has the same type as "var".
|
|
*@li epsilon: A scalar. Has the same type as "var".
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*
|
|
*@par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyAdaMax.
|
|
*
|
|
*/
|
|
REG_OP(ApplyAdaMax)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(m, TensorType::NumberType())
|
|
.INPUT(v, TensorType::NumberType())
|
|
.INPUT(beta1_power, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(beta1, TensorType::NumberType())
|
|
.INPUT(beta2, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdaMax)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the AdaMax algorithm.
|
|
* t-1 mean previous period.
|
|
* m_t <- beta1 * m{t-1} + (1 - beta1) * grad\n
|
|
* v_t <- max(beta2 * v{t-1}, abs(grad))\n
|
|
* var <- var - lr / (1 - beta1^t) * m_t / (v_t + epsilon)
|
|
*
|
|
*@attention Constraints:
|
|
* the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Must be one of the following types: TensorType::NumberType().
|
|
* Should be from a Variable().
|
|
*@li m: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li v: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li beta1_power: A scalar. Has the same type as "var".
|
|
*@li lr: learning_rate. A scalar. Has the same type as "var".
|
|
*@li beta1: A scalar. Has the same type as "var".
|
|
*@li beta2: A scalar. Has the same type as "var".
|
|
*@li epsilon: A scalar. Has the same type as "var".
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*
|
|
*@par Outputs:
|
|
*@li var: A mutable tensor. Has the same type as input "var".
|
|
*@li m: A mutable tensor. Has the same type as input "m".
|
|
*@li v: A mutable tensor. Has the same type as input "v".
|
|
*
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyAdaMax.
|
|
*
|
|
*/
|
|
REG_OP(ApplyAdaMaxD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(m, TensorType::NumberType())
|
|
.INPUT(v, TensorType::NumberType())
|
|
.INPUT(beta1_power, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(beta1, TensorType::NumberType())
|
|
.INPUT(beta2, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(m, TensorType::NumberType())
|
|
.OUTPUT(v, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdaMaxD)
|
|
|
|
/**
|
|
*@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme.
|
|
|
|
*@par Inputs:
|
|
* Five inputs, including:
|
|
*@li var: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li accum: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li lr: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li grad: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li indices: An NCHW, NHWC, or ND Tensor of type float32.
|
|
|
|
*@par Attributes:
|
|
*@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
|
|
*@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False".
|
|
|
|
*@par Outputs:
|
|
*var: A Tensor. Has the same type and format as input "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator SparseApplyAdagrad.
|
|
*/
|
|
REG_OP(SparseApplyAdagrad)
|
|
.INPUT(var, TensorType({DT_FLOAT}))
|
|
.INPUT(accum, TensorType({DT_FLOAT}))
|
|
.INPUT(lr, TensorType({DT_FLOAT}))
|
|
.INPUT(grad, TensorType({DT_FLOAT}))
|
|
.INPUT(indices, TensorType({DT_INT32}))
|
|
.OUTPUT(var, TensorType({DT_FLOAT}))
|
|
.ATTR(use_locking, Bool, false)
|
|
.ATTR(update_slots, Bool, true)
|
|
.OP_END_FACTORY_REG(SparseApplyAdagrad)
|
|
|
|
/**
|
|
*@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme.
|
|
|
|
*@par Inputs:
|
|
* Four inputs, including:
|
|
*@li var: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li accum: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li grad: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li indices: An NCHW, NHWC, or ND Tensor of type int32.
|
|
|
|
*@par Attributes:
|
|
*@li lr: Required, used for computation.
|
|
*@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
|
|
*@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False".
|
|
|
|
*@par Outputs:
|
|
*@li var: A Tensor. Has the same type and format as input "var".
|
|
*@li accum: A Tensor. Has the same type and format as input "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator SparseApplyAdagrad.
|
|
*/
|
|
REG_OP(SparseApplyAdagradD)
|
|
.INPUT(var, TensorType({DT_FLOAT}))
|
|
.INPUT(accum, TensorType({DT_FLOAT}))
|
|
.INPUT(grad, TensorType({DT_FLOAT}))
|
|
.INPUT(indices, TensorType({DT_INT32}))
|
|
.OUTPUT(var, TensorType({DT_FLOAT}))
|
|
.OUTPUT(accum, TensorType({DT_FLOAT}))
|
|
.REQUIRED_ATTR(lr, Float)
|
|
.ATTR(use_locking, Bool, false)
|
|
.ATTR(update_slots, Bool, true)
|
|
.OP_END_FACTORY_REG(SparseApplyAdagradD)
|
|
|
|
/**
|
|
*@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme.
|
|
|
|
*@par Inputs:
|
|
*Six inputs, including:
|
|
*@li var: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li accum: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li lr: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li epsilon: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li grad: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li indices: An NCHW, NHWC, or ND Tensor of type float32.
|
|
|
|
*@par Attributes:
|
|
*@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
|
|
*@li update_slots: An optional bool. Defaults to "True". If "False", the computation logic will be different.
|
|
|
|
*@par Outputs:
|
|
*var: A Tensor. Has the same type and format as input "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator SparseApplyAdagradV2.
|
|
*/
|
|
REG_OP(SparseApplyAdagradV2)
|
|
.INPUT(var, TensorType({DT_FLOAT}))
|
|
.INPUT(accum, TensorType({DT_FLOAT}))
|
|
.INPUT(lr, TensorType({DT_FLOAT}))
|
|
.INPUT(epsilon, TensorType({DT_FLOAT}))
|
|
.INPUT(grad, TensorType({DT_FLOAT}))
|
|
.INPUT(indices, TensorType({DT_INT32}))
|
|
.OUTPUT(var, TensorType({DT_FLOAT}))
|
|
.ATTR(use_locking, Bool, false)
|
|
.ATTR(update_slots, Bool, true)
|
|
.OP_END_FACTORY_REG(SparseApplyAdagradV2)
|
|
|
|
/**
|
|
*@brief Updates relevant entries in "var" and "accum" according to the adagrad scheme.
|
|
|
|
*@par Inputs:
|
|
*Four inputs, including:
|
|
*@li var: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li accum: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li grad: An NCHW, NHWC, or ND Tensor of type float32.
|
|
*@li indices: An NCHW, NHWC, or ND Tensor of type int32.
|
|
|
|
*@par Attributes:
|
|
*@li lr: Required, used for computation.
|
|
*@li epsilon: Required, used for computation.
|
|
*@li use_locking: An optional bool. Defaults to "False". If "True", the operation will be protected by a lock.
|
|
*@li update_slots: An optional bool. Defaults to "True". If "False", the computation logic will be different.
|
|
|
|
*@par Outputs:
|
|
*@li var: A Tensor. Has the same type and format as input "var".
|
|
*@li accum: A Tensor. Has the same type and format as input "accum".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator SparseApplyAdagradV2.
|
|
*/
|
|
REG_OP(SparseApplyAdagradV2D)
|
|
.INPUT(var, TensorType({DT_FLOAT}))
|
|
.INPUT(accum, TensorType({DT_FLOAT}))
|
|
.INPUT(grad, TensorType({DT_FLOAT}))
|
|
.INPUT(indices, TensorType({DT_INT32}))
|
|
.OUTPUT(var, TensorType({DT_FLOAT}))
|
|
.OUTPUT(accum, TensorType({DT_FLOAT}))
|
|
.REQUIRED_ATTR(lr, Float)
|
|
.REQUIRED_ATTR(epsilon, Float)
|
|
.ATTR(use_locking, Bool, false)
|
|
.ATTR(update_slots, Bool, true)
|
|
.OP_END_FACTORY_REG(SparseApplyAdagradV2D)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the momentum scheme. Set use_nesterov = True if you
|
|
* want to use Nesterov momentum.
|
|
* computing process: \n
|
|
* accum = accum * momentum + grad\n
|
|
* var -= lr * accum
|
|
*
|
|
*@attention Constraints:
|
|
* the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
*@li accum: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
*@li use_nesterov: An optional bool. Defaults to "False".
|
|
* If "True", the tensor passed to compute grad will be
|
|
* var - lr * momentum * accum, so in the end, the var you get is actually
|
|
* var - lr * momentum * accum.
|
|
*
|
|
*@li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected by a lock;
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
*
|
|
*@par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyMomentum.
|
|
*
|
|
*/
|
|
|
|
REG_OP(ApplyMomentum)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_nesterov, Bool, false)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyMomentum)
|
|
|
|
|
|
/**
|
|
*@brief Updates "var" according to the momentum scheme. Set use_nesterov = True if you
|
|
* want to use Nesterov momentum.
|
|
* computing process: \n
|
|
* accum = accum * momentum + grad\n
|
|
* var -= lr * accum
|
|
*
|
|
*@attention Constraints:
|
|
* the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
*@li accum: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
*@li use_nesterov: An optional bool. Defaults to "False".
|
|
* If "True", the tensor passed to compute grad will be
|
|
* var - lr * momentum * accum, so in the end, the var you get is actually
|
|
* var - lr * momentum * accum.
|
|
*
|
|
*@li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected by a lock;
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
*
|
|
*@par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
* accum: A mutable tensor. Has the same type as input "accum".
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyMomentum.
|
|
*
|
|
*/
|
|
|
|
REG_OP(ApplyMomentumD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.ATTR(use_nesterov, Bool, false)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyMomentumD)
|
|
|
|
/**
|
|
*@brief Updates '*var' according to the momentum scheme.
|
|
* accum = accum * momentum - grad * lr \n
|
|
* if use_nesterov is True: \n
|
|
* var += accum * momentum - grad * lr \n
|
|
* else: \n
|
|
* var += accum
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Must be one of the data types defined in
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
*@li accum: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li lr: A tensor for the learning rate. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
*@li grad: A tensor for the gradient. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
*@li momentum: A scalar. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
*@li use_nesterov: An optional bool. Defaults to "False".
|
|
* If "True", var will be updated by using Nesterov momentum.
|
|
*@li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" tensor is protected by a lock;
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
*
|
|
*@par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
*@attention Constraints:
|
|
* The input tensors must have the same shape.
|
|
*
|
|
*@par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
|
|
*
|
|
*/
|
|
REG_OP(ApplyKerasMomentum)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.ATTR(use_nesterov, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyKerasMomentum)
|
|
|
|
|
|
/**
|
|
*@brief Updates '*var' according to the momentum scheme.
|
|
* accum = accum * momentum - grad * lr \n
|
|
* if use_nesterov is True: \n
|
|
* var += accum * momentum - grad * lr \n
|
|
* else: \n
|
|
* var += accum
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Must be one of the data types defined in
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
*@li accum: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li lr: A tensor for the learning rate. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
*@li grad: A tensor for the gradient. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
*@li momentum: A scalar. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*
|
|
*@par Attributes:
|
|
*@li use_nesterov: An optional bool. Defaults to "False".
|
|
* If "True", var will be updated by using nesterov momentum
|
|
*@li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" tensor is protected by a lock;
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
*
|
|
*@par Outputs:
|
|
*@li var: A mutable tensor. Has the same type as input "var".
|
|
*@li accum: A mutable tensor. Has the same type as input "var"
|
|
*
|
|
*@attention Constraints:
|
|
* The input tensors must have the same shape.
|
|
*
|
|
*@par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
|
|
*
|
|
*/
|
|
REG_OP(ApplyKerasMomentumD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.ATTR(use_nesterov, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyKerasMomentumD)
|
|
|
|
|
|
/**
|
|
*@brief Updates '*var' according to the Adam algorithm.
|
|
* lr_t := {learning_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
|
|
* m_t := beta_1 * m_{t-1} + (1 - beta_1) * g
|
|
* v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g
|
|
* vhat_t := max{vhat_{t-1}, v_t}
|
|
* variable := variable - lr_t * m_t / (sqrt{vhat_t} + epsilon)
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Must be one of the data types defined in
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
*@li m: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li v: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li vhat: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li beta1_power: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li beta2_power: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li lr: A tensor for the learning rate. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
*@li grad: A tensor for the gradient. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
*
|
|
*@par Attributes:
|
|
*@li beta1: A scalar. Has the same type as "var".
|
|
*@li beta2: A scalar. Has the same type as "var".
|
|
*@li epsilon: A scalar. Has the same type as "var".
|
|
*@li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" tensor is protected by a lock;
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
*
|
|
*@par Outputs:
|
|
*@li var: A mutable tensor. Has the same type as input "var".
|
|
*@li m: A mutable tensor. Has the same type as input "var"
|
|
*@li v: A mutable tensor. Has the same type as input "var"
|
|
*@li vhat: A mutable tensor. Has the same type as input "var"
|
|
*
|
|
*@attention Constraints:
|
|
* The input tensors must have the same shape.
|
|
*
|
|
*@par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
|
|
*
|
|
*/
|
|
REG_OP(ApplyAdamWithAmsgradD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(m, TensorType::NumberType())
|
|
.INPUT(v, TensorType::NumberType())
|
|
.INPUT(vhat, TensorType::NumberType())
|
|
.INPUT(beta1_power, TensorType::NumberType())
|
|
.INPUT(beta2_power, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(m, TensorType::NumberType())
|
|
.OUTPUT(v, TensorType::NumberType())
|
|
.OUTPUT(vhat, TensorType::NumberType())
|
|
.REQUIRED_ATTR(beta1, Float)
|
|
.REQUIRED_ATTR(beta2, Float)
|
|
.REQUIRED_ATTR(epsilon, Float)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdamWithAmsgradD)
|
|
|
|
|
|
/**
|
|
*@brief Updates '*var' according to the Adam algorithm..
|
|
* lr_t := {learning_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)
|
|
* m_t := beta_1 * m_{t-1} + (1 - beta_1) * g
|
|
* v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g
|
|
* vhat_t := max{vhat_{t-1}, v_t}
|
|
* variable := variable - lr_t * m_t / (sqrt{vhat_t} + epsilon)
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Must be one of the data types defined in
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
*@li m: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li v: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li vhat: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li beta1_power: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li beta2_power: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
*@li lr: A tensor for the learning rate. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
*@li grad: A tensor for the gradient. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
*
|
|
*@par Attributes:
|
|
*@li beta1: A scalar. Has the same type as "var".
|
|
*@li beta2: A scalar. Has the same type as "var".
|
|
*@li epsilon: A scalar. Has the same type as "var".
|
|
*@li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" tensor is protected by a lock;
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
*
|
|
*@par Outputs:
|
|
*@li var: A mutable tensor. Has the same type as input "var".
|
|
*@li m: A mutable tensor. Has the same type as input "var"
|
|
*@li v: A mutable tensor. Has the same type as input "var"
|
|
*@li vhat: A mutable tensor. Has the same type as input "var"
|
|
*
|
|
*@attention Constraints:
|
|
* The input tensors must have the same shape.
|
|
*
|
|
*@par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator ResourceApplyKerasMomentum.
|
|
*
|
|
*/
|
|
REG_OP(ApplyAdamWithAmsgrad)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(m, TensorType::NumberType())
|
|
.INPUT(v, TensorType::NumberType())
|
|
.INPUT(vhat, TensorType::NumberType())
|
|
.INPUT(beta1_power, TensorType::NumberType())
|
|
.INPUT(beta2_power, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(beta1, TensorType::NumberType())
|
|
.INPUT(beta2, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdamWithAmsgrad)
|
|
|
|
|
|
/**
|
|
*@brief Updates "var" according to the AddSign update.
|
|
* t-1 mean previous period.
|
|
* m_t <- beta1 * m_{t-1} + (1 - beta1) * grad\n
|
|
* update <- exp(logbase * sign_decay * sign(grad) * sign(m_t)) * grad\n
|
|
* var <- var - lr * update
|
|
*
|
|
*@attention Constraints:
|
|
* the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
*@li m: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
*@li logbase: A scalar. Has the same type as "var".
|
|
*@li sign_decay: A scalar. Has the same type as "var".
|
|
*@li beta: A scalar. Has the same type as "var".
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*
|
|
*@par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyPowerSign.
|
|
*
|
|
*/
|
|
REG_OP(ApplyPowerSign)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(m, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(logbase, TensorType::NumberType())
|
|
.INPUT(sign_decay, TensorType::NumberType())
|
|
.INPUT(beta, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyPowerSign)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the AddSign update.
|
|
* t-1 mean previous period.
|
|
* m_t <- beta1 * m_{t-1} + (1 - beta1) * grad\n
|
|
* update <- exp(logbase * sign_decay * sign(grad) * sign(m_t)) * grad\n
|
|
* var <- var - lr * update
|
|
*
|
|
*@attention Constraints:
|
|
* the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
*@li m: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
*@li logbase: A scalar. Has the same type as "var".
|
|
*@li sign_decay: A scalar. Has the same type as "var".
|
|
*@li beta: A scalar. Has the same type as "var".
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*
|
|
*@par Outputs:
|
|
*@li var: A mutable tensor. Has the same type as input "var".
|
|
*@li m: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyPowerSign.
|
|
*
|
|
*/
|
|
REG_OP(ApplyPowerSignD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(m, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(logbase, TensorType::NumberType())
|
|
.INPUT(sign_decay, TensorType::NumberType())
|
|
.INPUT(beta, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(m, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyPowerSignD)
|
|
|
|
/**
|
|
*@brief Updates "var" as FOBOS algorithm with fixed learning rate.\n
|
|
* prox_v = var - alpha * delta\n
|
|
* var = sign(prox_v)/(1+alpha*l2) * max{|prox_v|-alpha*l1,0}
|
|
*
|
|
*@attention Constraints:\n
|
|
* the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
*@li alpha: A scalar. Has the same type as "var".
|
|
*@li l1: A scalar. Has the same type as "var".
|
|
*@li l2: A scalar. Has the same type as "var".
|
|
*@li delta: A tensor. Has the same type as "var". The change.
|
|
*
|
|
*@par Attributes:
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*
|
|
*@par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyProximalGradientDescent.
|
|
*
|
|
*/
|
|
REG_OP(ApplyProximalGradientDescent)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(alpha, TensorType::NumberType())
|
|
.INPUT(l1, TensorType::NumberType())
|
|
.INPUT(l2, TensorType::NumberType())
|
|
.INPUT(delta, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyProximalGradientDescent)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the AddSign update.
|
|
|
|
*@par Inputs:
|
|
*Seven inputs, including:
|
|
* @li var: A mutable Tensor of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li m: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li alpha: A Tensor of the same type as "var". Must be a scalar.
|
|
* @li sign_decay: A Tensor of the same type as "var". Must be a scalar.
|
|
* @li beta: A Tensor of the same type as "var". Must be a scalar.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" and "m" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator ApplyAddSign.
|
|
*/
|
|
REG_OP(ApplyAddSign)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(m, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(alpha, TensorType::NumberType())
|
|
.INPUT(sign_decay, TensorType::NumberType())
|
|
.INPUT(beta, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAddSign)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the AddSign update.
|
|
|
|
*@par Inputs:
|
|
*Seven inputs, including:
|
|
* @li var: A mutable Tensor of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li m: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li alpha: A Tensor of the same type as "var". Must be a scalar.
|
|
* @li sign_decay: A Tensor of the same type as "var". Must be a scalar.
|
|
* @li beta: A Tensor of the same type as "var". Must be a scalar.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" and "m" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*@li var: A mutable Tensor. Has the same type as "var".
|
|
*@li m: A mutable Tensor. Has the same type as "m".
|
|
|
|
*@par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator ApplyAddSign.
|
|
*/
|
|
REG_OP(ApplyAddSignD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(m, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(alpha, TensorType::NumberType())
|
|
.INPUT(sign_decay, TensorType::NumberType())
|
|
.INPUT(beta, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(m, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAddSignD)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the centered RMSProp algorithm.
|
|
* The centered RMSProp algorithm uses an estimate of the centered second moment
|
|
* (i.e., the variance) for normalization, as opposed to regular RMSProp, which
|
|
* uses the (uncentered) second moment. This often helps with training, but is
|
|
* slightly more expensive in terms of computation and memory.
|
|
*
|
|
* t-1 mean previous period.
|
|
* mg <- rho * mg{t-1} + (1-rho) * grad\n
|
|
* ms <- rho * ms{t-1} + (1-rho) * grad * grad\n
|
|
* mom <- momentum * mom{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon)\n
|
|
* var <- var - mom\n
|
|
*
|
|
*@attention Constraints:
|
|
*@li in dense implementation of this algorithm, mg, ms, and mom will
|
|
* update even if the grad is zero, but in this sparse implementation, mg, ms,
|
|
* and mom will not update in iterations during which the grad is zero.
|
|
*@li the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
*@li mg: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li ms: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li mom: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
*@li rho: A scalar. Has the same type as "var".
|
|
*@li momentum: A tensor. Has the same type as "var".
|
|
*@li epsilon: A scalar. Has the same type as "var".
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*
|
|
*@par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyCenteredRMSProp.
|
|
*
|
|
*/
|
|
REG_OP(ApplyCenteredRMSProp)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(mg, TensorType::NumberType())
|
|
.INPUT(ms, TensorType::NumberType())
|
|
.INPUT(mom, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(rho, TensorType::NumberType())
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyCenteredRMSProp)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the centered RMSProp algorithm.
|
|
* The centered RMSProp algorithm uses an estimate of the centered second moment
|
|
* (i.e., the variance) for normalization, as opposed to regular RMSProp, which
|
|
* uses the (uncentered) second moment. This often helps with training, but is
|
|
* slightly more expensive in terms of computation and memory.
|
|
*
|
|
* t-1 mean previous period.
|
|
* mg <- rho * mg{t-1} + (1-rho) * grad\n
|
|
* ms <- rho * ms{t-1} + (1-rho) * grad * grad\n
|
|
* mom <- momentum * mom{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon)\n
|
|
* var <- var - mom\n
|
|
*
|
|
*@attention Constraints:
|
|
*@li in dense implementation of this algorithm, mg, ms, and mom will
|
|
* update even if the grad is zero, but in this sparse implementation, mg, ms,
|
|
* and mom will not update in iterations during which the grad is zero.
|
|
*@li the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
*@li mg: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li ms: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li mom: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
*@li rho: A scalar. Has the same type as "var".
|
|
*@li momentum: A tensor. Has the same type as "var".
|
|
*@li epsilon: A scalar. Has the same type as "var".
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*
|
|
*@par Outputs:
|
|
*@li var: A mutable Tensor. Has the same type as "var".
|
|
*@li mg: A mutable Tensor. Has the same type as "mg".
|
|
*@li ms: A mutable Tensor. Has the same type as "ms".
|
|
*@li mom: A mutable Tensor. Has the same type as "mom".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyCenteredRMSPropD.
|
|
*
|
|
*/
|
|
REG_OP(ApplyCenteredRMSPropD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(mg, TensorType::NumberType())
|
|
.INPUT(ms, TensorType::NumberType())
|
|
.INPUT(mom, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(rho, TensorType::NumberType())
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(mg, TensorType::NumberType())
|
|
.OUTPUT(ms, TensorType::NumberType())
|
|
.OUTPUT(mom, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyCenteredRMSPropD)
|
|
|
|
/**
|
|
*@brief Updates "var" by subtracting 'alpha' * 'delta' from it.
|
|
* var -= delta * alpha
|
|
*
|
|
*@attention Constraints:
|
|
* the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
*@li alpha: A scalar. Has the same type as "var".
|
|
*@li delta: A tensor for the change. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" tensors is protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*
|
|
*@par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyGradientDescent.
|
|
*
|
|
*/
|
|
REG_OP(ApplyGradientDescent)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(alpha, TensorType::NumberType())
|
|
.INPUT(delta, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyGradientDescent)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the adagrad scheme.
|
|
* accum += grad * grad\n
|
|
* var -= lr * grad * (1 / sqrt(accum))
|
|
*
|
|
*@attention Constraints:
|
|
* the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
*@li accum: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
*@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False".
|
|
*@li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*
|
|
*@par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyAdagrad.
|
|
*
|
|
*/
|
|
REG_OP(ApplyAdagrad)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(update_slots, Bool, true)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdagrad)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the adagrad scheme.
|
|
* accum += grad * grad\n
|
|
* var -= lr * grad * (1 / sqrt(accum))
|
|
*
|
|
*@attention Constraints:
|
|
* the input tensors must have the same shape.
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable tensor. Should be from a Variable().
|
|
*@li accum: A mutable tensor. Has the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li lr: A scalar. Has the same type as "var".
|
|
*@li grad: A tensor for the gradient. Has the same type as "var".
|
|
*
|
|
*@par Attributes:
|
|
*@li update_slots: An optional bool. Defaults to "True". If "True", the calcution will be different as "False".
|
|
*@li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "ms", and "mom" tensors is protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*
|
|
*@par Outputs:
|
|
*@li var: A mutable tensor. Has the same type as input "var".
|
|
*@li accum: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyAdagrad.
|
|
*
|
|
*/
|
|
REG_OP(ApplyAdagradD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.ATTR(update_slots, Bool, true)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdagradD)
|
|
|
|
/**
|
|
* @brief Updates "var" according to the adagradv2 scheme.
|
|
* accum += grad * grad \n
|
|
* var -= lr * grad * (1 / sqrt(accum) + epsilon)
|
|
*
|
|
* @par Inputs:
|
|
* @li var: A mutable tensor. Must be one of the data types defined in
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
* @li accum: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li lr: A tensor for the learning rate. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
* @li grad: A tensor for the gradient. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
* @li epsilon: A scalar. Has the same type as "var".
|
|
*
|
|
* @par Attributes:
|
|
* @li update_slots: An optional bool. Defaults to "True".
|
|
* If "True", "accum" will be updated
|
|
* @li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" tensor is protected by a lock;
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
*
|
|
* @par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
* @attention Constraints:
|
|
* The input tensors must have the same shape.
|
|
*
|
|
* @par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator ApplyAdagrad.
|
|
*
|
|
*/
|
|
REG_OP(ApplyAdagradV2)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(update_slots, Bool, true)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdagradV2)
|
|
|
|
|
|
/**
|
|
* @brief Updates "var" according to the adagradv2 scheme.
|
|
* accum += grad * grad \n
|
|
* var -= lr * grad * (1 / sqrt(accum) + epsilon)
|
|
*
|
|
* @par Inputs:
|
|
* @li var: A mutable tensor. Must be one of the data types defined in
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
* @li accum: A mutable tensor. Has the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li lr: A tensor for the learning rate. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
* @li grad: A tensor for the gradient. Has the same type as "var". Should be
|
|
* from a Variable().
|
|
*
|
|
* @par Attributes:
|
|
* @li epsilon: A scalar. Has the same type as "var".
|
|
* @li update_slots: An optional bool. Defaults to "True".
|
|
* If "True", "accum" will be updated
|
|
* @li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" tensor is protected by a lock;
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
*
|
|
* @par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
* @attention Constraints:
|
|
* The input tensors must have the same shape.
|
|
*
|
|
* @par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator ApplyAdagrad.
|
|
*
|
|
*/
|
|
REG_OP(ApplyAdagradV2D)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.REQUIRED_ATTR(epsilon, Float)
|
|
.ATTR(update_slots, Bool, true)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdagradV2D)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the proximal adagrad scheme.
|
|
|
|
*@par Inputs:
|
|
*Eight inputs, including:
|
|
* @li var: A mutable Tensor. Must be one of the following types:
|
|
* TensorType::NumberType(). Should be a Variable Tensor.
|
|
* @li gradient_accumulator: A mutable Tensor. Must have the same
|
|
* type as "var". Should be a Variable Tensor.
|
|
* @li gradient_squared_accumulator: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
* @li lr: A Tensor of the same type as "var".
|
|
* Scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var".
|
|
* L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var".
|
|
* L2 regulariation. Must be a scalar.
|
|
* @li global_step: A Tensor of type int32 or int64.
|
|
* Training step number. Must be a scalar.
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the var and accum tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyAdagradDA.
|
|
*/
|
|
REG_OP(ApplyAdagradDA)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(gradient_accumulator, TensorType::NumberType())
|
|
.INPUT(gradient_squared_accumulator, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(l1, TensorType::NumberType())
|
|
.INPUT(l2, TensorType::NumberType())
|
|
.INPUT(global_step, TensorType({DT_INT32, DT_INT64}))
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdagradDA)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the proximal adagrad scheme.
|
|
|
|
*@par Inputs:
|
|
*Eight inputs, including:
|
|
* @li var: A mutable Tensor. Must be one of the following types:
|
|
* TensorType::NumberType(). Should be a Variable Tensor.
|
|
* @li gradient_accumulator: A mutable Tensor. Must have the same
|
|
* type as "var". Should be a Variable Tensor.
|
|
* @li gradient_squared_accumulator: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
* @li lr: A Tensor of the same type as "var".
|
|
* Scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var".
|
|
* L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var".
|
|
* L2 regulariation. Must be a scalar.
|
|
* @li global_step: A Tensor of type int32 or int64.
|
|
* Training step number. Must be a scalar.
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the var and accum tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
*gradient_accumulator: A mutable Tensor. Has the same type as "var".
|
|
*gradient_squared_accumulator: A mutable Tensor. Has the same type as "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyAdagradDA.
|
|
*/
|
|
REG_OP(ApplyAdagradDAD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(gradient_accumulator, TensorType::NumberType())
|
|
.INPUT(gradient_squared_accumulator, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(l1, TensorType::NumberType())
|
|
.INPUT(l2, TensorType::NumberType())
|
|
.INPUT(global_step, TensorType({DT_INT32, DT_INT64}))
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(gradient_accumulator, TensorType::NumberType())
|
|
.OUTPUT(gradient_squared_accumulator, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdagradDAD)
|
|
|
|
/**
|
|
*@brief Returns the dimension index in the destination data format given the one in
|
|
* the source data format.
|
|
*
|
|
*@par Inputs:
|
|
* x: A tensor of type int32 or int64.
|
|
* A Tensor with each element as a dimension index in source data format.
|
|
* Must be in the range [-4, 4).
|
|
*
|
|
*@par Attributes:
|
|
*@li src_format: An optional string. Defaults to NHWC.
|
|
* source data format. Must of length 4.
|
|
*@li dst_format: An optional string. Defaults to NCHW.
|
|
* destination data format. Must of length 4.
|
|
*
|
|
*@par Outputs:
|
|
* y: A tensor. Has the same type as "x". Must be in the range [0, 4).
|
|
*
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator DataFormatDimMap.
|
|
*
|
|
*/
|
|
REG_OP(DataFormatDimMap)
|
|
.INPUT(x, TensorType::IndexNumberType())
|
|
.ATTR(src_format, String, "NHWC")
|
|
.ATTR(dst_format, String, "NCHW")
|
|
.OUTPUT(y, TensorType::IndexNumberType())
|
|
.OP_END_FACTORY_REG(DataFormatDimMap)
|
|
|
|
/**
|
|
* @brief Implements stochastic gradient descent (optionally with momentum).
|
|
* Nesterov momentum is based on the formula from
|
|
* On the importance of initialization and momentum in deep learning.\n
|
|
|
|
* @par Inputs:
|
|
* @li parameters: A mutable tensor of type float16 or float32.\n
|
|
* Specifies the iterable of parameters to optimize or dicts defining parameter
|
|
* groups.
|
|
* @li gradient: A tensor of type float16 or float32.\n
|
|
* Specifies the gradient of training step.
|
|
* @li learning_rate: A tensor of type float16 or float32.\n
|
|
* Specifies the learing_rate of training step.
|
|
* @li accum: A tensor of type float16 or float32.
|
|
* Specifies the velocity of training step.
|
|
* @li momentum: A tensor of type float16 or float32.
|
|
* Specifies the momentum factor.
|
|
* @li stat: A tensor of type float16 or float32.
|
|
* Specifies the status representing the first step or not.
|
|
|
|
* @par Attributes:
|
|
* @li dampening: An optional float, specifying the dampening for momentum.
|
|
* Defaults to "0.0".
|
|
* @li weight_decay: An optional float, specifying the L2 penalty. Defaults to
|
|
* "0.0".
|
|
* @li nesterov: An optional bool, specifying whether to enable Nesterov
|
|
* momentum. Defaults to "False".
|
|
|
|
* @par Outputs:
|
|
* parameters: A mutable tensor same as input "parameters".
|
|
|
|
* @see ApplyMomentum()
|
|
|
|
* @par Third-party framework compatibility
|
|
* @li Compatible with the PyTorch operator SGD.
|
|
*/
|
|
REG_OP(SGD)
|
|
.INPUT(parameters, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
.INPUT(gradient, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
.INPUT(learning_rate, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
.INPUT(accum, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
.INPUT(momentum, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
.INPUT(stat, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
.OUTPUT(parameters, TensorType(DT_FLOAT, DT_FLOAT16))
|
|
.ATTR(dampening, Float, 0.0)
|
|
.ATTR(weight_decay, Float, 0.0)
|
|
.ATTR(nesterov, Bool, false)
|
|
.OP_END_FACTORY_REG(SGD)
|
|
|
|
/**
|
|
* @brief Updates "var" according to the RMSProp algorithm.
|
|
* mean_square = decay * mean_square + (1-decay) * gradient ** 2\n
|
|
* Delta = learning_rate * gradient / sqrt(mean_square + epsilon)\n
|
|
* ms <- rho * ms_{t-1} + (1-rho) * grad * grad\n
|
|
* mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)\n
|
|
* var <- var - mom\n
|
|
*
|
|
* @par Inputs:
|
|
* @li var: A mutable tensor. Must be one of the data types defined in
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
* @li ms: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li mom: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li lr: A scalar. Must have the same type as "var".
|
|
* @li rho: A scalar. Must have the same type as "var".
|
|
* @li momentum: A scalar. Must have the same type as "var".
|
|
* @li epsilon: A scalar. Must have the same type as "var".
|
|
* @li grad: A tensor, specifying the gradient. Must have the same type as "var".
|
|
*
|
|
* @par Attributes:
|
|
* use_locking: An optional "bool". Defaults to "False". If "True", updating of
|
|
* the "var", "ms", and "mom" tensors will be protected by a lock; otherwise the
|
|
* behavior is undefined, but may exhibit less contention.
|
|
*
|
|
* @par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
* @attention Constraints:
|
|
* @li Note that in dense implementation of this algorithm, "ms" and "mom" will
|
|
* update even if "grad" is 0, but in this sparse implementation, "ms" and "mom"
|
|
* will not update in iterations during which "grad" is 0.
|
|
* @li The input tensors "var", "ms", "mom" and "grad" must have the same shape.
|
|
*
|
|
* @par Third-party framework compatibility
|
|
* @li Compatible with the TensorFlow operator ApplyRMSProp.
|
|
*/
|
|
REG_OP(ApplyRMSProp)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(ms, TensorType::NumberType())
|
|
.INPUT(mom, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(rho, TensorType::NumberType())
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyRMSProp)
|
|
|
|
/**
|
|
* @brief Updates "var" according to the RMSProp algorithm, a const input will be
|
|
* considered as an attribute.
|
|
* mean_square = decay * mean_square + (1-decay) * gradient ** 2\n
|
|
* Delta = learning_rate * gradient / sqrt(mean_square + epsilon)\n
|
|
* ms <- rho * ms_{t-1} + (1-rho) * grad * grad\n
|
|
* mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)\n
|
|
* var <- var - mom
|
|
*
|
|
* @par Inputs:
|
|
* @li var: A mutable tensor. Must be one of the data types defined in
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
* @li ms: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li mom: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li lr: A scalar. Must have the same type as "var".
|
|
* @li grad: A tensor, specifying the gradient. Must have the same type as "var".
|
|
*
|
|
* @par Attributes:
|
|
* @li use_locking: An optional "bool". Defaults to "False". If "True", updating
|
|
* of the "var", "ms", and "mom" tensors will be protected by a lock;
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
* @li rho: A required scalar. Must have the same type as "var".
|
|
* @li momentum: A required scalar. Must have the same type as "var".
|
|
* @li epsilon: A required scalar. Must have the same type as "var".
|
|
*
|
|
* @par Outputs:
|
|
* var: A mutable tensor. Must have the same type as input "var".
|
|
*
|
|
* @attention Constraints:
|
|
* @li Note that in dense implementation of this algorithm, "ms" and "mom" will
|
|
* update even if "grad" is 0, but in this sparse implementation, "ms" and "mom"
|
|
* will not update in iterations during which "grad" is 0.
|
|
* @li The input tensors "var", "ms", "mom" and "grad" must have the same shape.
|
|
*
|
|
* @par Third-party framework compatibility
|
|
* @li Compatible with the TensorFlow operator ApplyRMSProp.
|
|
*/
|
|
REG_OP(ApplyRMSPropD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(ms, TensorType::NumberType())
|
|
.INPUT(mom, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(ms, TensorType::NumberType())
|
|
.OUTPUT(mom, TensorType::NumberType())
|
|
.REQUIRED_ATTR(rho, Float)
|
|
.REQUIRED_ATTR(momentum, Float)
|
|
.REQUIRED_ATTR(epsilon, Float)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyRMSPropD)
|
|
|
|
/**
|
|
*@brief Update "var" and "accum" according to FOBOS with Adagrad learning rate.
|
|
|
|
*@par Inputs:
|
|
*Six inputs, including:
|
|
* @li var: A mutable Tensor of type TensorType::NumberType().
|
|
* Should be from a Variable().
|
|
* @li accum: A mutable Tensor of the same type as "var". Should be from a Variable().
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False". If "True", updating of the "var" and "accum" *tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less *contention.
|
|
|
|
*@par Outputs:
|
|
*var: A mutable tensor. Must have the same type as input "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyProximalAdagrad.
|
|
*/
|
|
REG_OP(ApplyProximalAdagrad)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(l1, TensorType::NumberType())
|
|
.INPUT(l2, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyProximalAdagrad)
|
|
|
|
/**
|
|
*@brief Update "var" and "accum" according to FOBOS with Adagrad learning rate.
|
|
|
|
*@par Inputs:
|
|
*Six inputs, including:
|
|
* @li var: A mutable Tensor of type TensorType::NumberType().
|
|
* Should be from a Variable().
|
|
* @li accum: A mutable Tensor of the same type as "var". Should be from a Variable().
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False". If "True", updating of the "var" and "accum" *tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less *contention.
|
|
|
|
*@par Outputs:
|
|
* @li var: A mutable Tensor. Has the same type as "var".
|
|
* @li accum: A mutable Tensor. Has the same type as "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyProximalAdagradD.
|
|
*/
|
|
REG_OP(ApplyProximalAdagradD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(l1, TensorType::NumberType())
|
|
.INPUT(l2, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyProximalAdagradD)
|
|
|
|
/**
|
|
*@brief Updates entries in 'var' and 'accum' according to the Proximal Adagrad algorithm.
|
|
* Compared with op ApplyProximalAdagrad, an additional index tensor is input,
|
|
* Only the indices into the first dimensions of "var" and "accum" are updated.
|
|
|
|
*@par Inputs:
|
|
* Seven inputs, including:\n
|
|
* @li var: A mutable Tensor.
|
|
* TensorType::NumberType(). Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li lr: A Tensor of the same type as "var".
|
|
* Scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var".
|
|
* L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var".
|
|
* L2 regulariation. Must be a scalar.
|
|
* @li grad: A Tensor. Has the same type as "var".
|
|
* The gradient.
|
|
* @li indices: A vector of indices into the first dimension of "var" and "accum".
|
|
* TensorType::IndexNumberType().
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".\n
|
|
* If "True", updating of the var and accum tensors will be protected by a lock; \n
|
|
* If "False", the behavior is undefined, but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator SparseApplyProximalAdagrad.
|
|
*/
|
|
REG_OP(SparseApplyProximalAdagrad)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(l1, TensorType::NumberType())
|
|
.INPUT(l2, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(SparseApplyProximalAdagrad)
|
|
|
|
/**
|
|
*@brief Updates entries in 'var' and 'accum' according to the Proximal Adagrad algorithm.\ n
|
|
* Compared with op ApplyProximalAdagrad, an additional index tensor is input,
|
|
* Only the indices into the first dimensions of "var" and "accum" are updated.
|
|
|
|
*@par Inputs:
|
|
* Seven inputs, including:\n
|
|
* @li var: A mutable Tensor.\n
|
|
* TensorType::NumberType(). Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".\n
|
|
* Should be a Variable Tensor.
|
|
* @li lr: A Tensor of the same type as "var".\n
|
|
* Scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var".\n
|
|
* L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var".\n
|
|
* L2 regulariation. Must be a scalar.
|
|
* @li grad: A Tensor. Has the same type as "var". \n
|
|
* The gradient.
|
|
* @li indices: A vector of indices into the first dimension of "var" and "accum".\n
|
|
* TensorType::IndexNumberType().
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".\n
|
|
* If "True", updating of the var and accum tensors will be protected by a lock; \n
|
|
* If "False", the behavior is undefined, but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*@li var: A mutable Tensor. Has the same type as "var".
|
|
*@li accum: A mutable Tensor. Has the same type as "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator SparseApplyProximalAdagrad.
|
|
*/
|
|
REG_OP(SparseApplyProximalAdagradD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(l1, TensorType::NumberType())
|
|
.INPUT(l2, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(SparseApplyProximalAdagradD)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the Ftrl-proximal scheme.
|
|
|
|
*@par Inputs:
|
|
*Eight inputs, including:
|
|
* @li var: A mutable Tensor. Must be of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li linear: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
* @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" and "accum" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyFtrl.
|
|
*/
|
|
REG_OP(ApplyFtrl)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(linear, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(l1, TensorType::NumberType())
|
|
.INPUT(l2, TensorType::NumberType())
|
|
.INPUT(lr_power, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyFtrl)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the Ftrl-proximal scheme.
|
|
|
|
*@par Inputs:
|
|
*Eight inputs, including:
|
|
* @li var: A mutable Tensor. Must be of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li linear: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
* @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" and "accum" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*@li var: A mutable Tensor. Has the same type as "var".
|
|
*@li accum: A mutable Tensor. Has the same type as "accum".
|
|
*@li linear: A mutable Tensor. Has the same type as "linear".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyFtrl.
|
|
*/
|
|
REG_OP(ApplyFtrlD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(linear, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(l1, TensorType::NumberType())
|
|
.INPUT(l2, TensorType::NumberType())
|
|
.INPUT(lr_power, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.OUTPUT(linear, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyFtrlD)
|
|
|
|
/**
|
|
*@brief Update "var" according to the Ftrl-proximal scheme.
|
|
|
|
*@par Inputs:
|
|
*Nine inputs, including:
|
|
* @li var: A mutable Tensor. Must be of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li linear: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
* @li l2_shrinkage: A Tensor of the same type as "var".
|
|
* @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" and "accum" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyFtrlV2.
|
|
*/
|
|
REG_OP(ApplyFtrlV2)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(linear, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(l1, TensorType::NumberType())
|
|
.INPUT(l2, TensorType::NumberType())
|
|
.INPUT(l2_shrinkage, TensorType::NumberType())
|
|
.INPUT(lr_power, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyFtrlV2)
|
|
|
|
/**
|
|
*@brief Update "var" according to the Ftrl-proximal scheme.
|
|
|
|
*@par Inputs:
|
|
*Nine inputs, including:
|
|
* @li var: A mutable Tensor. Must be of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li linear: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
* @li l2_shrinkage: A Tensor of the same type as "var".
|
|
* @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" and "accum" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
*accum: A mutable Tensor. Has the same type as "accum".
|
|
*linear: A mutable Tensor. Has the same type as "linear".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyFtrlV2.
|
|
*/
|
|
REG_OP(ApplyFtrlV2D)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(linear, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(l1, TensorType::NumberType())
|
|
.INPUT(l2, TensorType::NumberType())
|
|
.INPUT(l2_shrinkage, TensorType::NumberType())
|
|
.INPUT(lr_power, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.OUTPUT(linear, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyFtrlV2D)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the Adam algorithm.
|
|
* lr_t <- text{learning\_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)\n
|
|
* m_t <- beta_1 * m_{t-1} + (1 - beta_1) * g\n
|
|
* v_t <- max(beta2 * v{t-1}, abs(g))\n
|
|
* variable <- variable - lr_t * m_t / (sqrt{v_t} + epsilon)
|
|
*
|
|
*@attention Constraints:
|
|
* *The input tensors must have the same shape.*
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable Tensor of the type TensorType::NumberType().
|
|
* Should be from a Variable().
|
|
*@li m: A mutable Tensor of the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li v: A mutable Tensor of the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li beta1_power: A scalar of the same type as "var".
|
|
*@li beta2_power: A scalar of the same type as "var".
|
|
*@li lr: learning_rate. A scalar of the same type as "var".
|
|
*@li beta1: A scalar of the same type as "var".
|
|
*@li beta2: A scalar of the same type as "var".
|
|
*@li epsilon: A scalar of the same type as "var".
|
|
*@li grad: A Tensor of the same type as "var", for the gradient.
|
|
*
|
|
*@par Attributes:
|
|
*@li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", m", and "v" tensors will be protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*@li use_nesterov: An optional bool. Defaults to "False".
|
|
If "True", uses the nesterov update.
|
|
*
|
|
*@par Outputs:
|
|
* var: A mutable Tensor. Has the same type as intput "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyAdam.
|
|
*/
|
|
REG_OP(ApplyAdam)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(m, TensorType::NumberType())
|
|
.INPUT(v, TensorType::NumberType())
|
|
.INPUT(beta1_power, TensorType::NumberType())
|
|
.INPUT(beta2_power, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(beta1, TensorType::NumberType())
|
|
.INPUT(beta2, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.ATTR(use_nesterov, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdam)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the Adam algorithm.
|
|
* lr_t <- text{learning\_rate} * sqrt{1 - beta_2^t} / (1 - beta_1^t)\n
|
|
* m_t <- beta_1 * m_{t-1} + (1 - beta_1) * g\n
|
|
* v_t <- max(beta2 * v{t-1}, abs(g))\n
|
|
* variable <- variable - lr_t * m_t / (sqrt{v_t} + epsilon)
|
|
*
|
|
*@attention Constraints:
|
|
* *The input tensors must have the same shape.*
|
|
*
|
|
*@par Inputs:
|
|
*@li var: A mutable Tensor of the type TensorType::NumberType().
|
|
* Should be from a Variable().
|
|
*@li m: A mutable Tensor of the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li v: A mutable Tensor of the same type as "var".
|
|
* Should be from a Variable().
|
|
*@li beta1_power: A scalar of the same type as "var".
|
|
*@li beta2_power: A scalar of the same type as "var".
|
|
*@li lr: learning_rate. A scalar of the same type as "var".
|
|
*@li beta1: A scalar of the same type as "var".
|
|
*@li beta2: A scalar of the same type as "var".
|
|
*@li epsilon: A scalar of the same type as "var".
|
|
*@li grad: A Tensor of the same type as "var", for the gradient.
|
|
*
|
|
*@par Attributes:
|
|
*@li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", m", and "v" tensors will be protected
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less
|
|
* contention.
|
|
*@li use_nesterov: An optional bool. Defaults to "False".
|
|
If "True", uses the nesterov update.
|
|
*
|
|
*@par Outputs:
|
|
*@li var: A mutable tensor. Has the same type as input "var".
|
|
*@li m: A mutable tensor. Has the same type as input "m".
|
|
*@li v: A mutable tensor. Has the same type as input "v".
|
|
|
|
*@par Third-party framework compatibility
|
|
*Compatible with the TensorFlow operator ApplyAdam.
|
|
*/
|
|
REG_OP(ApplyAdamD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(m, TensorType::NumberType())
|
|
.INPUT(v, TensorType::NumberType())
|
|
.INPUT(beta1_power, TensorType::NumberType())
|
|
.INPUT(beta2_power, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(beta1, TensorType::NumberType())
|
|
.INPUT(beta2, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(m, TensorType::NumberType())
|
|
.OUTPUT(v, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.ATTR(use_nesterov, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdamD)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the proximal adadelta scheme.
|
|
|
|
*@par Inputs:
|
|
*Seven inputs, including:
|
|
* @li var: A mutable Tensor of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li accum_update: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li lr: A scalar of the same type as "var", for the scaling factor.
|
|
* @li rho: A scalar of the same type as "var", for the decay factor.
|
|
* @li epsilon: A scalar of the same type as "var", for the constant factor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "accum" and "accum_update" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*var: A mutable Tensor. Has the same type as "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator ApplyAdadelta.
|
|
*/
|
|
REG_OP(ApplyAdadelta)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(accum_update, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(rho, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdadelta)
|
|
|
|
/**
|
|
*@brief Updates "var" according to the proximal adadelta scheme.
|
|
|
|
*@par Inputs:
|
|
*Seven inputs, including:
|
|
* @li var: A mutable Tensor of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li accum_update: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li lr: A scalar of the same type as "var", for the scaling factor.
|
|
* @li rho: A scalar of the same type as "var", for the decay factor.
|
|
* @li epsilon: A scalar of the same type as "var", for the constant factor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
|
|
*@par Attributes:
|
|
*use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var", "accum" and "accum_update" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
*@par Outputs:
|
|
*@li var: A mutable Tensor. Has the same type as "var".
|
|
*@li accum: A mutable Tensor. Has the same type as "var".
|
|
*@li accum_update: A mutable Tensor. Has the same type as "var".
|
|
|
|
*@par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator ApplyAdadelta.
|
|
*/
|
|
REG_OP(ApplyAdadeltaD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(accum_update, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(rho, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.OUTPUT(accum_update, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(ApplyAdadeltaD)
|
|
|
|
/**
|
|
* @brief Updates "var" according to the ApplyMomentum algorithm. \n
|
|
* accum = accum * momentum + x1 * x2 \n
|
|
* if use_nesterov is True: \n
|
|
* var -= x1 * x2 * lr + accum * momentum * lr \n
|
|
* else:\n
|
|
* var -= accum * lr
|
|
*
|
|
* @par Inputs:
|
|
* Six inputs, including:
|
|
* @li var: A mutable Tensor has type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor has the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li lr: A scalar has the same type as "var", for the scaling factor.
|
|
* @li x1: A Tensor has type TensorType::NumberType().
|
|
* @li momentum: A scalar has the same type as "var".
|
|
* @li x2: A scalar has the same type as "var".
|
|
*
|
|
* @par Attributes:
|
|
* Two attributes, including:
|
|
* @li use_nesterov: An optional bool. Defaults to "False". \n
|
|
* If True, the tensor passed to compute grad will be var - lr * momentum * accum, \n
|
|
* so in the end, the var you get is actually var - lr * momentum * accum.
|
|
* @li use_locking: An optional bool. Defaults to "False". \n
|
|
* If "True", updating of the "var", m", and "v" tensors will be protected \n
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less contention.
|
|
*
|
|
* @par Outputs:
|
|
* Two outputs, including:
|
|
* @li var: A mutable Tensor has the same type as "var".
|
|
* @li accum: A mutable Tensor has the same type as "var".
|
|
*/
|
|
REG_OP(FusedMulApplyMomentum)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(x1, TensorType::NumberType())
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
.INPUT(x2, TensorType::NumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.ATTR(use_nesterov, Bool, false)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(FusedMulApplyMomentum)
|
|
|
|
/**
|
|
* @brief Updates "var" according to the ApplyMomentum algorithm. \n
|
|
* accum = accum * momentum + x1 * x2 \n
|
|
* if use_nesterov is True: \n
|
|
* var -= x1 * x2 * lr + accum * momentum * lr \n
|
|
* else: \n
|
|
* var -= accum * lr
|
|
*
|
|
* @par Inputs:
|
|
* Seven inputs, including:
|
|
* @li var: A mutable Tensor of type float32.
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor has type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li lr: A scalar has the same type as "accum", for the scaling factor.
|
|
* @li x1: A Tensor has the same type as "accum".
|
|
* @li momentum: A scalar has the same type as "accum".
|
|
* @li x2: A scalar has the same type as "accum".
|
|
* @li var_copy: A Tensor has type float16.
|
|
*
|
|
* @par Attributes:
|
|
* Two Attributes, including:
|
|
* @li use_nesterov: An optional bool. Defaults to "False". \n
|
|
* If True, the tensor passed to compute grad will be var - lr * momentum * accum, \n
|
|
* so in the end, the var you get is actually var - lr * momentum * accum.
|
|
* @li use_locking: An optional bool. Defaults to "False". \n
|
|
* If "True", updating of the "var", m", and "v" tensors will be protected \n
|
|
* by a lock; otherwise the behavior is undefined, but may exhibit less contention.
|
|
*
|
|
* @par Outputs:
|
|
* Three outputs, including:
|
|
* @li var: A Tensor has the type float32.
|
|
* @li var_copy: A Tensor has the type float16.
|
|
* @li accum: A Tensor has the same type as input "accum".
|
|
*/
|
|
REG_OP(FusedMulApplyMomentumExtern)
|
|
.INPUT(var, TensorType(DT_FLOAT))
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(x1, TensorType::NumberType())
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
.INPUT(x2, TensorType::NumberType())
|
|
.INPUT(var_copy, TensorType(DT_FLOAT16))
|
|
.OUTPUT(var, TensorType(DT_FLOAT))
|
|
.OUTPUT(var_copy, TensorType(DT_FLOAT16))
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.ATTR(use_nesterov, Bool, false)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(FusedMulApplyMomentumExtern)
|
|
|
|
/**
|
|
*@brief Update "g" according to the LARS algorithm.
|
|
|
|
*@par Inputs:
|
|
*Four inputs, including:
|
|
* @li w: A Tensor. Must be of type TensorType::DT_FLOAT.
|
|
* @li g: A Tensor of the same type and shape as "w".
|
|
* @li weight_decay: A Tensor of the same type as "w", Must be a scalar.
|
|
* @li learning_rate: A Tensor of the same type as "w", Must be a scalar.
|
|
|
|
*@par Attributes:
|
|
*Three Attributes, including:
|
|
* @li hyperpara: An optional float. Default value is 0.001.
|
|
* @li epsilon: An optional float. Default value is 1e-5.Avoid denominator is 0.
|
|
* @li use_clip: An optional bool. Defaults to "False".\n
|
|
* If "True", updating learning rate.
|
|
|
|
*@par Outputs:
|
|
*g_new: Tensor of the same type as "w".
|
|
*/
|
|
REG_OP(LarsV2)
|
|
.INPUT(w, TensorType(DT_FLOAT))
|
|
.INPUT(g, TensorType(DT_FLOAT))
|
|
.INPUT(weight_decay, TensorType(DT_FLOAT))
|
|
.INPUT(learning_rate, TensorType(DT_FLOAT))
|
|
.OUTPUT(g_new, TensorType(DT_FLOAT))
|
|
.ATTR(hyperpara, Float, 0.001)
|
|
.ATTR(epsilon, Float, 0.00001)
|
|
.ATTR(use_clip, Bool, false)
|
|
.OP_END_FACTORY_REG(LarsV2)
|
|
|
|
/**
|
|
*@brief Update "g" according to the LARS algorithm.
|
|
|
|
*@par Inputs:
|
|
*Six inputs, including:
|
|
* @li w: A Tensor. Must be of type TensorType::DT_FLOAT.
|
|
* @li g: A Tensor of the same type and shape as "w".
|
|
* @li w_square_sum: A Tensor of square_sum(w), has the same type as "w", Must be a scalar.
|
|
* @li g_square_sum: A Tensor of square(g), has the same type as "w", Must be a scalar.
|
|
* @li weight_decay: A Tensor of the same type as "w", Must be a scalar.
|
|
* @li learning_rate: A Tensor of the same type as "w", Must be a scalar.
|
|
|
|
*@par Attributes:
|
|
*Three Attributes, including:
|
|
* @li hyperpara: An optional float. Default value is 0.001.
|
|
* @li epsilon: An optional float. Default value is 1e-5.Avoid denominator is 0.
|
|
* @li use_clip: An optional bool. Defaults to "False".\n
|
|
* If "True", updating learning rate.
|
|
|
|
*@par Outputs:
|
|
*g_new: Tensor of the same type as "w".
|
|
*/
|
|
REG_OP(LarsV2Update)
|
|
.INPUT(w, TensorType(DT_FLOAT))
|
|
.INPUT(g, TensorType(DT_FLOAT))
|
|
.INPUT(w_square_sum, TensorType(DT_FLOAT))
|
|
.INPUT(g_square_sum, TensorType(DT_FLOAT))
|
|
.INPUT(weight_decay, TensorType(DT_FLOAT))
|
|
.INPUT(learning_rate, TensorType(DT_FLOAT))
|
|
.OUTPUT(g_new, TensorType(DT_FLOAT))
|
|
.ATTR(hyperpara, Float, 0.001)
|
|
.ATTR(epsilon, Float, 0.00001)
|
|
.ATTR(use_clip, Bool, false)
|
|
.OP_END_FACTORY_REG(LarsV2Update)
|
|
|
|
/**
|
|
* @brief Update relevant entries in '*var' according to the Ftrl-proximal scheme.
|
|
|
|
* @par Inputs:
|
|
* Nine inputs, including:
|
|
* @li var: A mutable Tensor. Must be of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li linear: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
* @li indices: A vector of indices into the first dimension of var and accum.
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
* @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
* @par Attributes:
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" and "accum" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
* @par Outputs:
|
|
* var: A Tensor. Has the same type and format as input "var".
|
|
|
|
* @par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator SparseApplyFtrl.
|
|
*/
|
|
REG_OP(SparseApplyFtrl)
|
|
.INPUT(var, TensorType({DT_FLOAT}))
|
|
.INPUT(accum, TensorType({DT_FLOAT}))
|
|
.INPUT(linear, TensorType({DT_FLOAT}))
|
|
.INPUT(grad, TensorType({DT_FLOAT}))
|
|
.INPUT(indices, TensorType({DT_INT32}))
|
|
.INPUT(lr, TensorType({DT_FLOAT}))
|
|
.INPUT(l1, TensorType({DT_FLOAT}))
|
|
.INPUT(l2, TensorType({DT_FLOAT}))
|
|
.INPUT(lr_power, TensorType({DT_FLOAT}))
|
|
.OUTPUT(var, TensorType({DT_FLOAT}))
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(SparseApplyFtrl)
|
|
|
|
/**
|
|
* @brief Update relevant entries in '*var' according to the Ftrl-proximal scheme.
|
|
|
|
* @par Inputs:
|
|
* Five inputs, including:
|
|
* @li var: A mutable Tensor. Must be of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li linear: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
* @li indices: A vector of indices into the first dimension of var and accum.
|
|
|
|
* @par Attributes:
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
* @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" and "accum" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
* @par Outputs:
|
|
* @li var: A Tensor. Has the same type and format as input "var".
|
|
* @li accum: A Tensor. Has the same type and format as input "accum".
|
|
* @li linear: A Tensor. Has the same type and format as input "linear".
|
|
|
|
* @par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator SparseApplyFtrl.
|
|
*/
|
|
REG_OP(SparseApplyFtrlD)
|
|
.INPUT(var, TensorType({DT_FLOAT}))
|
|
.INPUT(accum, TensorType({DT_FLOAT}))
|
|
.INPUT(linear, TensorType({DT_FLOAT}))
|
|
.INPUT(grad, TensorType({DT_FLOAT}))
|
|
.INPUT(indices, TensorType({DT_INT32}))
|
|
.OUTPUT(var, TensorType({DT_FLOAT}))
|
|
.OUTPUT(accum, TensorType({DT_FLOAT}))
|
|
.OUTPUT(linear, TensorType({DT_FLOAT}))
|
|
.REQUIRED_ATTR(lr, Float)
|
|
.REQUIRED_ATTR(l1, Float)
|
|
.REQUIRED_ATTR(l2, Float)
|
|
.REQUIRED_ATTR(lr_power, Float)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(SparseApplyFtrlD)
|
|
|
|
/**
|
|
* @brief Updates relevant entries in '*var' according to the Ftrl-proximal scheme.
|
|
* That is for rows we have grad for, "var", "accum" and "linear" are updated.
|
|
|
|
* @par Inputs:
|
|
* Ten inputs, including:
|
|
* @li var: A mutable Tensor. Must be of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li linear: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
* @li indices: A vector of indices into the first dimension of "var" and "accum".
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
* @li l2_shrinkage: A Tensor of the same type as "var", L2 shrinkage regulariation. Must be a scalar.
|
|
* @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
|
|
* @par Attributes:
|
|
* use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" and "accum" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
* @par Outputs:
|
|
* var: A Tensor. Has the same type and format as input "var".
|
|
|
|
* @par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator SparseApplyFtrlV2.
|
|
*/
|
|
REG_OP(SparseApplyFtrlV2)
|
|
.INPUT(var, TensorType({DT_FLOAT}))
|
|
.INPUT(accum, TensorType({DT_FLOAT}))
|
|
.INPUT(linear, TensorType({DT_FLOAT}))
|
|
.INPUT(grad, TensorType({DT_FLOAT}))
|
|
.INPUT(indices, TensorType({DT_INT32}))
|
|
.INPUT(lr, TensorType({DT_FLOAT}))
|
|
.INPUT(l1, TensorType({DT_FLOAT}))
|
|
.INPUT(l2, TensorType({DT_FLOAT}))
|
|
.INPUT(l2_shrinkage, TensorType({DT_FLOAT}))
|
|
.INPUT(lr_power, TensorType({DT_FLOAT}))
|
|
.OUTPUT(var, TensorType({DT_FLOAT}))
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(SparseApplyFtrlV2)
|
|
|
|
/**
|
|
* @brief Updates relevant entries in '*var' according to the Ftrl-proximal scheme.
|
|
* That is for rows we have grad for, "var", "accum" and "linear" are updated.
|
|
|
|
* @par Inputs:
|
|
* Five inputs, including:
|
|
* @li var: A mutable Tensor. Must be of type TensorType::NumberType().
|
|
* Should be a Variable Tensor.
|
|
* @li accum: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li linear: A mutable Tensor of the same type as "var".
|
|
* Should be a Variable Tensor.
|
|
* @li grad: A Tensor of the same type as "var", for the gradient.
|
|
* @li indices: A vector of indices into the first dimension of "var" and "accum".
|
|
|
|
* @par Attributes:
|
|
* @li lr: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li l1: A Tensor of the same type as "var", for L1 regulariation. Must be a scalar.
|
|
* @li l2: A Tensor of the same type as "var", for L2 regulariation. Must be a scalar.
|
|
* @li l2_shrinkage: A Tensor of the same type as "var", L2 shrinkage regulariation. Must be a scalar.
|
|
* @li lr_power: A Tensor of the same type as "var", for the scaling factor. Must be a scalar.
|
|
* @li use_locking: An optional bool. Defaults to "False".
|
|
* If "True", updating of the "var" and "accum" tensors will be
|
|
* protected by a lock; otherwise the behavior is undefined,
|
|
* but may exhibit less contention.
|
|
|
|
* @par Outputs:
|
|
* @li var: A Tensor. Has the same type and format as input "var".
|
|
* @li accum: A Tensor. Has the same type and format as input "accum".
|
|
* @li linear: A Tensor. Has the same type and format as input "linear".
|
|
|
|
* @par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator SparseApplyFtrlV2D.
|
|
*/
|
|
REG_OP(SparseApplyFtrlV2D)
|
|
.INPUT(var, TensorType({DT_FLOAT}))
|
|
.INPUT(accum, TensorType({DT_FLOAT}))
|
|
.INPUT(linear, TensorType({DT_FLOAT}))
|
|
.INPUT(grad, TensorType({DT_FLOAT}))
|
|
.INPUT(indices, TensorType({DT_INT32}))
|
|
.OUTPUT(var, TensorType({DT_FLOAT}))
|
|
.OUTPUT(accum, TensorType({DT_FLOAT}))
|
|
.OUTPUT(linear, TensorType({DT_FLOAT}))
|
|
.REQUIRED_ATTR(lr, Float)
|
|
.REQUIRED_ATTR(l1, Float)
|
|
.REQUIRED_ATTR(l2, Float)
|
|
.REQUIRED_ATTR(l2_shrinkage, Float)
|
|
.REQUIRED_ATTR(lr_power, Float)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(SparseApplyFtrlV2D)
|
|
|
|
/**
|
|
* @brief Updates "var" in specified index according to the RMSProp algorithm.
|
|
* mean_square = decay * mean_square + (1-decay) * gradient ** 2\n
|
|
* Delta = learning_rate * gradient / sqrt(mean_square + epsilon)\n
|
|
* ms <- rho * ms_{t-1} + (1-rho) * grad * grad\n
|
|
* mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)\n
|
|
* var <- var - mom\n
|
|
*
|
|
* @par Inputs:
|
|
* Nine inputs, including:
|
|
* @li var: A mutable tensor. Must be one of the data types defined in\n
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
* @li ms: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li mom: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li lr: A scalar. Must have the same type as "var".
|
|
* @li rho: A scalar. Must have the same type as "var".
|
|
* @li momentum: A scalar. Must have the same type as "var".
|
|
* @li epsilon: A scalar. Must have the same type as "var".
|
|
* @li grad: A tensor, specifying the gradient.
|
|
* @li indices: A vector of indices into the first dimension of "var", "mom" and "ms".
|
|
*
|
|
* @par Attributes:
|
|
* use_locking: An optional "bool". Defaults to "False". If "True", updating of
|
|
* the "var", "ms", and "mom" tensors will be protected by a lock; otherwise the
|
|
* behavior is undefined, but may exhibit less contention.
|
|
*
|
|
* @par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
* @attention Constraints:
|
|
* @li Note that in this sparse implementation, "ms" and "mom" will not update
|
|
* in iterations during which "grad" is 0.
|
|
* @li The input tensors "var", "ms", and "mom" must have the same shape.
|
|
*
|
|
* @par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator SparseApplyRMSProp.
|
|
*/
|
|
REG_OP(SparseApplyRMSProp)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(ms, TensorType::NumberType())
|
|
.INPUT(mom, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(rho, TensorType::NumberType())
|
|
.INPUT(momentum, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(SparseApplyRMSProp)
|
|
|
|
/**
|
|
* @brief Updates "var" in specified index according to the RMSProp algorithm.
|
|
* a const input will be considered as an attribute.\n
|
|
* mean_square = decay * mean_square + (1-decay) * gradient ** 2\n
|
|
* Delta = learning_rate * gradient / sqrt(mean_square + epsilon)\n
|
|
* ms <- rho * ms_{t-1} + (1-rho) * grad * grad\n
|
|
* mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)\n
|
|
* var <- var - mom
|
|
*
|
|
* @par Inputs:
|
|
* Six inputs, including:
|
|
* @li var: A mutable tensor. Must be one of the data types defined in
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
* @li ms: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li mom: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li lr: A scalar. Must have the same type as "var".
|
|
* @li grad: A tensor, specifying the gradient.
|
|
*
|
|
* @par Attributes:
|
|
* @li use_locking: An optional "bool". Defaults to "False". If "True",
|
|
* updating of the "var", "ms", and "mom" tensors will be protected by a lock;
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
* @li rho: A required scalar. Must have the same type as "var".
|
|
* @li momentum: A required scalar. Must have the same type as "var".
|
|
* @li epsilon: A required scalar. Must have the same type as "var".
|
|
*
|
|
* @par Outputs:
|
|
* @li var: A mutable tensor. Must have the same type as input "var".
|
|
* @li ms: A mutable tensor. Must have the same type as input "ms".
|
|
* @li mom: A mutable tensor. Must have the same type as input "mom".
|
|
*
|
|
* @attention Constraints:
|
|
* @li Note that in this sparse implementation, "ms" and "mom" will not update
|
|
* in iterations during which "grad" is 0.
|
|
* @li The input tensors "var", "ms" and "mom" must have the same shape.
|
|
*/
|
|
REG_OP(SparseApplyRMSPropD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(ms, TensorType::NumberType())
|
|
.INPUT(mom, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(ms, TensorType::NumberType())
|
|
.OUTPUT(mom, TensorType::NumberType())
|
|
.REQUIRED_ATTR(rho, Float)
|
|
.REQUIRED_ATTR(momentum, Float)
|
|
.REQUIRED_ATTR(epsilon, Float)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(SparseApplyRMSPropD)
|
|
|
|
/**
|
|
* @brief Updates "var" in specified index according to the Adadelta algorithm.
|
|
* accum <- rho * accum + (1 - rho) * grad.square()\n
|
|
* update <- (accum_update + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad\n
|
|
* var <- var - update * lr\n
|
|
* accum_update <- rho() * accum_update + (1 - rho()) * update.square()\n
|
|
*
|
|
* @par Inputs:
|
|
* Eight inputs, including:
|
|
* @li var: A mutable tensor. Must be one of the data types defined in\n
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
* @li accum: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li accum_update: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li lr: A scalar. Must have the same type as "var".
|
|
* @li rho: A scalar. Must have the same type as "var".
|
|
* @li epsilon: A scalar. Must have the same type as "var".
|
|
* @li grad: A tensor, specifying the gradient.
|
|
* @li indices: A vector of indices into the first dimension of "var", "accum" and "accum_update".
|
|
*
|
|
* @par Attributes:
|
|
* use_locking: An optional "bool". Defaults to "False". If "True", updating of
|
|
* the "var", "accum", and "accum_update" tensors will be protected by a lock; otherwise the
|
|
* behavior is undefined, but may exhibit less contention.
|
|
*
|
|
* @par Outputs:
|
|
* var: A mutable tensor. Has the same type as input "var".
|
|
*
|
|
* @attention Constraints:
|
|
* @li Note that in this sparse implementation, "accum" and "accum_update" will not update
|
|
* in iterations during which "grad" is 0.
|
|
* @li The input tensors "var", "accum", and "accum_update" must have the same shape.
|
|
*
|
|
* @par Third-party framework compatibility
|
|
* Compatible with the TensorFlow operator SparseApplyAdadelta.
|
|
*/
|
|
REG_OP(SparseApplyAdadelta)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(accum_update, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(rho, TensorType::NumberType())
|
|
.INPUT(epsilon, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(SparseApplyAdadelta)
|
|
|
|
/**
|
|
* @brief Updates "var" in specified index according to the Adadelta algorithm.
|
|
* a const input will be considered as an attribute.\n
|
|
* accum <- rho * accum + (1 - rho) * grad.square()\n
|
|
* update <- (accum_update + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad\n
|
|
* var <- var - update * lr\n
|
|
* accum_update <- rho() * accum_update + (1 - rho()) * update.square()\n
|
|
*
|
|
* @par Inputs:
|
|
* Seven inputs, including:
|
|
* @li var: A mutable tensor. Must be one of the data types defined in
|
|
* TensorType::NumberType(). Should be from a Variable().
|
|
* @li accum: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li accum_update: A mutable tensor. Must have the same type as "var". Should be from a
|
|
* Variable().
|
|
* @li lr: A scalar. Must have the same type as "var".
|
|
* @li rho: A scalar. Must have the same type as "var".
|
|
* @li grad: A tensor, specifying the gradient.
|
|
* @li indices: A vector of indices into the first dimension of "var", "accum" and "accum_update".
|
|
*
|
|
* @par Attributes:
|
|
* @li use_locking: An optional "bool". Defaults to "False". If "True",
|
|
* updating of the "var", "accum", and "accum_update" tensors will be protected by a lock;
|
|
* otherwise the behavior is undefined, but may exhibit less contention.
|
|
* @li epsilon: A required scalar. Must have the same type as "var".
|
|
*
|
|
* @par Outputs:
|
|
* @li var: A mutable tensor. Must have the same type as input "var".
|
|
* @li accum: A mutable tensor. Must have the same type as input "accum".
|
|
* @li accum_update: A mutable tensor. Must have the same type as input "accum_update".
|
|
*
|
|
* @attention Constraints:
|
|
* @li Note that in this sparse implementation, "accum" and "accum_update" will not update
|
|
* in iterations during which "grad" is 0.
|
|
* @li The input tensors "var", "accum" and "accum_update" must have the same shape.
|
|
*/
|
|
REG_OP(SparseApplyAdadeltaD)
|
|
.INPUT(var, TensorType::NumberType())
|
|
.INPUT(accum, TensorType::NumberType())
|
|
.INPUT(accum_update, TensorType::NumberType())
|
|
.INPUT(lr, TensorType::NumberType())
|
|
.INPUT(rho, TensorType::NumberType())
|
|
.INPUT(grad, TensorType::NumberType())
|
|
.INPUT(indices, TensorType::IndexNumberType())
|
|
.OUTPUT(var, TensorType::NumberType())
|
|
.OUTPUT(accum, TensorType::NumberType())
|
|
.OUTPUT(accum_update, TensorType::NumberType())
|
|
.REQUIRED_ATTR(epsilon, Float)
|
|
.ATTR(use_locking, Bool, false)
|
|
.OP_END_FACTORY_REG(SparseApplyAdadeltaD)
|
|
|
|
|
|
/**
|
|
*@brief Clean memory of workspace list.
|
|
|
|
*@par Attributes:
|
|
* @li automic_add_mem_size: sizes of workspaces.
|
|
|
|
*/
|
|
REG_OP(AtomicAddrClean)
|
|
.ATTR(automic_add_mem_size, ListInt, {})
|
|
.OP_END_FACTORY_REG(AtomicAddrClean)
|
|
} // namespace ge
|
|
|
|
#endif // GE_OP_TRAINING_OPS_H
|