You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/third_party/fwkacllib/inc/ops/nonlinear_fuc_ops.h

551 lines
16 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GE_OP_NONLINEAR_FUC_OPS_H
#define GE_OP_NONLINEAR_FUC_OPS_H
#include "graph/operator_reg.h"
namespace ge {
/**
*@brief Computes the for the gelu of "x".
*@par Inputs:
*Two inputs, including:
* @li x: A Tensor. Must be one of the following types: float16, float32
*@par Outputs:
*y: A Tensor. Has the same type as "x".
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator Gelu
*/
REG_OP(Gelu)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.OP_END_FACTORY_REG(Gelu)
/**
*@brief Computes the gradient for the gelu of "x".
*@par Inputs:
*Three inputs, including:
* @li dy: A Tensor. Must be one of the following types: float16, float32
* @li x: A Tensor of the same type as "dy".
* @li y: A Tensor of the same type as "dy".
*@par Outputs:
*z: A Tensor. Has the same type as "dy".
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator GeluGrad
*/
REG_OP(GeluGrad)
.INPUT(dy, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(z, TensorType({DT_FLOAT16, DT_FLOAT}))
.OP_END_FACTORY_REG(GeluGrad)
/**
*@brief Computes the gradient for the tanh of "x".
*@par Inputs:
*Two inputs, including:
* @li y: A Tensor. Must be one of the following types: float16, float32,
* double, complex64, complex128.
* @li dy: A Tensor of the same type as "y".
*@par Outputs:
*z: A Tensor. Has the same type as "y".
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator TanhGrad.
*/
REG_OP(TanhGrad)
.INPUT(y, TensorType::UnaryDataType())
.INPUT(dy, TensorType::UnaryDataType())
.OUTPUT(z, TensorType::UnaryDataType())
.OP_END_FACTORY_REG(TanhGrad)
/**
*@brief: Computes hyperbolic tangent of "x" element-wise.
*@par Inputs:
*One input:
*x: A Tensor. Must be one of the following types: float16, float32, complex64, complex128, double.
*@par Outputs:
*y: A Tensor. Has the same type as "x".
*@par Third-party framework compatibility
* Compatible with TensorFlow operator Tanh.
*/
REG_OP(Tanh)
.INPUT(x, TensorType::UnaryDataType())
.OUTPUT(y, TensorType::UnaryDataType())
.OP_END_FACTORY_REG(Tanh)
/**
* @brief Computes rectified linear: "max(x, 0)".
*
* @par Inputs:
* x: A tensor. Must be one of the following types: float32, float64, int32, uint8,\n
* int16, int8, int64, uint16, float16, qint8.
*
* @par Outputs:
* y: A tensor. Has the same type as "x".
*
* @par Third-party framework compatibility
* @li Compatible with the TensorFlow operator Relu.
* @li Compatible with the Caffe operator ReLULayer.
*
*/
REG_OP(Relu)
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE,
DT_INT8, DT_INT32, DT_INT16, DT_INT64,
DT_UINT8, DT_UINT16, DT_QINT8}))
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE,
DT_INT8, DT_INT32, DT_INT16, DT_INT64,
DT_UINT8, DT_UINT16, DT_QINT8}))
.OP_END_FACTORY_REG(Relu)
/**
* @brief Computes rectified linear 6.
* activations = min(max(x, 0), 6).
* @par Inputs:
* x: A Tensor of type RealNumberType.
* @par Outputs:
* y: A Tensor of type RealNumberType.
* @par Third-party framework compatibility
* Compatible with the TensorFlow operator Relu6.
*/
REG_OP(Relu6)
.INPUT(x, TensorType::RealNumberType())
.OUTPUT(y, TensorType::RealNumberType())
.OP_END_FACTORY_REG(Relu6)
/**
* @brief Computes rectified linear 6*scale.
* activations = min(max(x, 0), 6*scale).
* @par Inputs:
* x: A Tensor of type RealNumberType.
* @par Attributes:
* epsilon: A required scalar. The data type is float32.
* @par Outputs:
* y: A Tensor of type RealNumberType.
* @par Third-party framework compatibility
* Compatible with the TensorFlow operator Relu6.
*/
REG_OP(Relu6D)
.INPUT(x, TensorType::RealNumberType())
.OUTPUT(y, TensorType::RealNumberType())
.ATTR(scale, Float, 1.0)
.OP_END_FACTORY_REG(Relu6D)
/**
* @brief Computes rectified linear 6 gradients for a Relu6 operation.
* backprops = gradients * (features > 0) * (features < 6).
* @par Inputs:
* @li features: A Tensor of type RealNumberType.
* @li gradients: A Tensor of type RealNumberType.
* @par Outputs:
* backprops: A Tensor of type RealNumberType.
* @par Third-party framework compatibility
* Compatible with the TensorFlow operator Relu6Grad.
*/
REG_OP(Relu6Grad)
.INPUT(gradients, TensorType::RealNumberType())
.INPUT(features, TensorType::RealNumberType())
.OUTPUT(backprops, TensorType::RealNumberType())
.OP_END_FACTORY_REG(Relu6Grad)
/**
* @brief Compute sigmoid of "x" element-wise.
* @par Inputs:
* A Tensor of type complex64, complex128, float16, float32 or double.
* @par Outputs:
* A Tensor. Has the same type as "x".
* @see Relu()
* @par Third-party framework compatibility
* Compatible with the TensorFlow operator Sigmoid.
*/
REG_OP(Sigmoid)
.INPUT(x, TensorType::UnaryDataType())
.OUTPUT(y, TensorType::UnaryDataType())
.OP_END_FACTORY_REG(Sigmoid)
/**
* @brief Computes z = (y - y*y)*dy.
* @par Inputs:
* @li y: The input is Tensor, dtype is UnaryDataType.
* @li dy: The input is Tensor, dtype is UnaryDataType.
* @par Outputs:
* z: The shape of output, dtype is UnaryDataType.
*/
REG_OP(SigmoidGrad)
.INPUT(y, TensorType(UnaryDataType))
.INPUT(dy, TensorType(UnaryDataType))
.OUTPUT(z, TensorType(UnaryDataType))
.OP_END_FACTORY_REG(SigmoidGrad)
/**
*@brief Computes the binomial normal log likelihood (BNLL) output:\n
*if x>0, x+log(1+exp(-x)); otherwise log(1+exp(x)).
*@par Inputs:
*x: A Tensor of type double, float16 or float32.
*@par Outputs:
*y: A tensor. Has the same type and format as input "x".
*@par Third-party framework compatibility
* Compatible with the Caffe operator BNLL.
*/
REG_OP(BNLL)
.INPUT(x, TensorType::FloatingDataType())
.OUTPUT(y, TensorType::FloatingDataType())
.OP_END_FACTORY_REG(BNLL)
/**
*@brief Computes softplus: log(exp(x) + 1).
*@par Inputs:
* One input:\n
*x: A Tensor of type float16 or float32. Up to 8D.
*@par Outputs:
*y: The activations tensor. Has the same type and format as input "x"
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator Softplus.
*/
REG_OP(Softplus)
.INPUT(x, TensorType::FloatingDataType())
.OUTPUT(y, TensorType::FloatingDataType())
.OP_END_FACTORY_REG(Softplus)
/**
*@brief Computes softplus gradients for a softplus operation.
*@par Inputs:
*Two inputs:
* @li gradients: An NC1HWC0 or ND Tensor of type float16 or float32.
* @li features: An NC1HWC0 or ND Tensor of type float16 or float32.
*@par Outputs:
*backprops: A Tensor. Has the same type and format as input "gradients".
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator SoftplusGrad.
*/
REG_OP(SoftplusGrad)
.INPUT(gradients, TensorType::FloatingDataType())
.INPUT(features, TensorType::FloatingDataType())
.OUTPUT(backprops, TensorType::FloatingDataType())
.OP_END_FACTORY_REG(SoftplusGrad)
/**
*@brief Computes softsign: x/(abs(x) + 1).
*@par Inputs:
* One input:\n
*x: A Tensor of type float16 or float32. Up to 8D.
*@par Outputs:
*y: The activations tensor. Has the same type and format as "x"
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator Softsign.
*/
REG_OP(Softsign)
.INPUT(x, TensorType::FloatingDataType())
.OUTPUT(y, TensorType::FloatingDataType())
.OP_END_FACTORY_REG(Softsign)
/**
*@brief Computes scaled exponential linear: scale * alpha * (exp(x) - 1).
*@par Inputs:
* One input:
*x: A Tensor. Must be one of the following types: float16, float, double
* int32, int8. format:ND, NC1HWC0.
*@par Outputs:
*y: A Tensor. Has the same type and format as input "x". format:ND, NC1HWC0.
*@see Region()
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator Selu.
*/
REG_OP(Selu)
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,
DT_INT8,DT_INT32}))
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT,DT_DOUBLE,
DT_INT8,DT_INT32}))
.OP_END_FACTORY_REG(Selu)
/**
*@brief Computes rectified linear gradients for a ReLU operation.
*@par Inputs:
* Two inputs, including:
*@li gradients: A Tensor. Must be one of the following types: float32, double,
* int32, int8, int16, int64, uint16, float16, uint32, uint64
*@li features: A Tensor. Must be one of the following types: float32, double,
* int32, int8, int16, int64, uint16, float16, uint32, uint64
*@par Outputs:
*backprops: A Tensor. Must have the same type as"gradients".
*@attention Constraints:
* The corresponding Relu operator needs to be called before using this operator on the network.
*@see Relu
*@par Third-party framework compatibility
* Compatible with TensorFlow operator ReluGrad.
*/
REG_OP(ReluGrad)
.INPUT(gradients, TensorType::RealNumberType())
.INPUT(features, TensorType::RealNumberType())
.OUTPUT(backprops, TensorType::RealNumberType())
.OP_END_FACTORY_REG(ReluGrad)
/**
*@brief Computes rectified linear gradients for a ReLU operation.
*@par Inputs:
* Two inputs, including:
*@li gradients: A Tensor. Must be one of the following types: float32, double, int32, int8, int16,\n int8, int64, uint16, float16, uint32, uint64
*@li mask: A Tensor. Must be the following types: uint8
*@par Outputs:
*backprops: A Tensor. Must have the same type as"gradients".
*@attention Constraints:
* The corresponding Relu operator needs to be called before using this operator on the network.
*@see Relu
*@par Third-party framework compatibility
* Compatible with TensorFlow operator ReluGradV2.
*/
REG_OP(ReluGradV2)
.INPUT(gradients, TensorType::RealNumberType())
.INPUT(mask, TensorType({DT_UINT8}))
.OUTPUT(backprops, TensorType::RealNumberType())
.OP_END_FACTORY_REG(ReluGradV2)
/**
*@brief Computes rectified linear: "max(x, 0)".
*
*@attention Constraints:\n
* The last dimension must be divisible by 8.
* The second output "mask" is "1" (for y >= 0) or "0" ( for y < 0).
*
*@par Inputs:
* x: A tensor. Must be one of the following types: float32, float64, int32, uint8,
* int16, int8, int64, uint16, float16, qint8.
*
*@par Outputs:
*@li y: A tensor. Has the same type as "x".
*@li mask: A tensor of type uint8.
*
*@par Third-party framework compatibility
* Incompatible with TensorFlow or Caffe.
*
*/
REG_OP(ReluV2)
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_INT8, DT_INT32, DT_INT16, DT_INT64, DT_UINT8, DT_UINT16, DT_QINT8}))
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_INT8, DT_INT32, DT_INT16, DT_INT64, DT_UINT8, DT_UINT16, DT_QINT8}))
.OUTPUT(mask, TensorType({DT_UINT8}))
.OP_END_FACTORY_REG(ReluV2)
/**
*@brief Performs parametric ReLU.
*@par Inputs:
* Two inputs, including: \n
*@li x: A multi-dimensional Tensor of type float16 or float32.
*@li weight: A Scalar or 1D Tensor of type float16 or float32, specifying the weight, the initial value of "a". The number of dimensions must be the same as the number of channels.
*@par Outputs:
*y: An activated Tensor. Has the same dimensions with "x".
*@par Third-party framework compatibility
* Compatible with PyTorch and Caffe operator PReLU.
*/
REG_OP(PRelu)
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16}))
.INPUT(weight, TensorType({DT_FLOAT, DT_FLOAT16}))
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16}))
.OP_END_FACTORY_REG(PRelu)
/**
*@brief Performs the backpropagation of PRelu for training scenarios.
*@par Inputs:
* Three inputs, including: \n
*@li grads: Input gradient. Multi-dimensional Tensors are supported. The data type can be float16 or float32.
*@li features: A multi-dimensional Tensor of type float16 or float32.
*@li weights: A Scalar or 1D Tensor of type float16 or float32, specifying the weight. The number of dimensions must be the same as the number of channels.
*@par Outputs:
*@li dx: Reverse gradient of "features". Has the same dimensions and type as "features".
*@li da: Reverse gradient of "weight". Has the same dimensions and type as "features".
*@par Third-party framework compatibility
* Compatible with PyTorch operator PReluGrad.
*/
REG_OP(PReluGrad)
.INPUT(grads, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(features, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(weights, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dx, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(da, TensorType({DT_FLOAT16, DT_FLOAT}))
.OP_END_FACTORY_REG(PReluGrad)
/**
*@brief Activation function fused from sigmoid and ReLU, with soft saturation
* on the left and no saturation on the right.
*@par Inputs:
*x: A float16, float32 or double, for the input data type.
*@par Attributes:
*alpha: A float32. Defines at which negative value the ELU saturates. Defaults to "1.0".
*@par Outputs:
*y: A float16, float32 or double, for the normalized result.
*@attention Constraints:
*@li The input is of type float16 or float32.
*@par Multiple batches supported or not
*Supported
*@par Third-party framework compatibility
*@li Compatible with Tensorflow's Elu operator
*@li Compatible with Caffe's ELULayer operator
*
*@since V100R001C33
*/
REG_OP(Elu)
.INPUT(x, TensorType::FloatingDataType())
.OUTPUT(y, TensorType::FloatingDataType())
.ATTR(alpha, Float, 1.0)
.OP_END_FACTORY_REG(Elu)
/**
*@brief Computes gradients for the exponential linear (Elu) operation.
*
*@par Inputs:
*@li grads: A tensor. Must be one of the following types: float16, float32, float64.
* The backpropagated gradients to the corresponding Elu operation.
*@li activations: A tensor. Has the same type as "grads".
* The outputs of the corresponding Elu operation.
*
*@par Outputs:
* y: A tensor. Has the same type as "grads".
*
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator EluGrad.
*
*/
REG_OP(EluGrad)
.INPUT(grads, TensorType::FloatingDataType())
.INPUT(activations, TensorType::FloatingDataType())
.OUTPUT(y, TensorType::FloatingDataType())
.OP_END_FACTORY_REG(EluGrad)
/**
*@brief Computes the output as x if x > 0 and negative_slope * x if x <= 0.
*@par Inputs:
* One input:
* x: A Tensor. Must be one of the following types: float32, float16, double.
*
*@par Attributes:
*negative_slope: A float32. Defaults to "0.0".
*
*@par Outputs:
*y: A Tensor. Has the same type as "x".
*@par Third-party framework compatibility
* Compatible with the Caffe operator ReLU.
*/
REG_OP(LeakyRelu)
.INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE}))
.ATTR(negative_slope, Float, 0.0)
.OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE}))
.OP_END_FACTORY_REG(LeakyRelu)
/**
*@brief Computes the output as gradients if features > 0 and negative_slope * gradients if features <= 0.
*@par Inputs:
* Two inputs, including:
* @li gradients: A Tensor. Must be one of the following types: float16, float32, double.
* @li features: A Tensor. Has the same type as "gradients".
*@par Attributes:
*negative_slope: A float32. Defaults to "0.0".
*@par Outputs:
*backprops: A Tensor. Has the same type as "gradients".
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator LeakyReluGrad.
*/
REG_OP(LeakyReluGrad)
.INPUT(gradients, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
.INPUT(features, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
.ATTR(negative_slope, Float, 0.0)
.OUTPUT(backprops, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
.OP_END_FACTORY_REG(LeakyReluGrad)
REG_OP(ThresholdGradV2D)
.INPUT(gradients, TensorType({DT_INT32, DT_FLOAT16}))
.INPUT(features, TensorType({DT_INT32, DT_FLOAT16}))
.OUTPUT(backprops, TensorType({DT_INT32, DT_FLOAT16}))
.REQUIRED_ATTR(threshold, Float)
.OP_END_FACTORY_REG(ThresholdGradV2D)
REG_OP(ThresholdV2D)
.INPUT(x, TensorType::RealNumberType())
.OUTPUT(y, TensorType::RealNumberType())
.REQUIRED_ATTR(threshold, Float)
.REQUIRED_ATTR(value, Float)
.OP_END_FACTORY_REG(ThresholdV2D)
} // namespace ge
#endif // GE_OP_NONLINEAR_FUC_OPS_H