You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/third_party/fwkacllib/inc/ops/split_combination_ops.h

373 lines
14 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GE_OP_SPLIT_COMBINATION_OPS_H
#define GE_OP_SPLIT_COMBINATION_OPS_H
#include "graph/operator_reg.h"
namespace ge {
/**
*@brief Splits a tensor along dimension "split_dim" into "num_split" smaller tensors.
*@par Inputs:
* Two inputs, including:
*@li x: An ND Tensor.
*Must be one of the types:float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32.
*@li split_dim: Must be the following type:int32. Specifies the dimension along which to split.
*@par Attributes:
*num_split: A required int32. Specifies the number of output tensors. No default value.
*@par Outputs:
*y: Dynamic output.A list of output tensors. Has the same type and format as "x".
*@attention Constraints:
*@li "num_split" is greater than or equals to 1.
*@li "num_split" is divisible by the size of dimension "split_dim".
*@li "split_dim" is in the range [-len(x.shape), (x.shape)-1].
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator Split.
*/
REG_OP(Split)
.INPUT(split_dim, TensorType({DT_INT32}))
.INPUT(x, TensorType::BasicType())
.DYNAMIC_OUTPUT(y, TensorType::BasicType())
.REQUIRED_ATTR(num_split, Int)
.OP_END_FACTORY_REG(Split)
/**
*@brief Splits a tensor along dimension "split_dim" into "num_split" smaller tensors.
*@par Inputs:
* One input:
*: An ND Tensor. \n
*Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64
*@par Attributes:
*@li split_dim: A required int8, int16, int32, or int64. Specifies the dimension along which to split. No default value.
*@li num_split: A required int8, int16, int32, or int64. Specifies the number of output tensors. No default value.
*@par Outputs:
*y:Dynamic output. A list of output tensors. Has the same type and format as "x".
*@attention Constraints:
*@li "num_split" is greater than or equals to 1.
*@li "num_split" is divisible by the size of dimension "split_dim".
*@li "split_dim" is in the range [-len(x.shape), (x.shape)-1].
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator Split.
*/
REG_OP(SplitD)
.INPUT(x, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8,
DT_UINT16, DT_UINT32, DT_UINT64, DT_FLOAT, DT_FLOAT16}))
.DYNAMIC_OUTPUT(y, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8,
DT_UINT16, DT_UINT32, DT_UINT64, DT_FLOAT, DT_FLOAT16}))
.REQUIRED_ATTR(split_dim, Int)
.REQUIRED_ATTR(num_split, Int)
.OP_END_FACTORY_REG(SplitD)
/**
*@brief Splits a tensor along dimension "split_dim" into "num_split" smaller tensors according to "size_splits".
*@par Inputs:
* Three inputs, including:
*@li x: An ND Tensor. \n
*Must be one of the following types:
*@li size_splits: A list of int8, int16, int32, or int64. Specifies a list containing the sizes of each output tensor along the split dimension.
*@li split_dim: An int8, int16, int32, or int64. Specifies the dimension along which to split.
*@par Attributes:
*num_split: A required int8, int16, int32, or int64. Specifies the number of output tensors. No default value.
*@par Outputs:
*y: Dynamic output.A list of output tensors. Has the same type and format as "x".
*@attention Constraints:
*@li Each element in "size_splits" is greater than or equal to 1.
*@li "size_splits" and "num_split" have the same length.
*@li The elements in "size_splits" sum to the size of dimension "split_dim".
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator SplitV.
*/
REG_OP(SplitV)
.INPUT(x, TensorType::BasicType())
.INPUT(size_splits, TensorType::IndexNumberType())
.INPUT(split_dim, TensorType({DT_INT32}))
.DYNAMIC_OUTPUT(y, TensorType::BasicType())
.REQUIRED_ATTR(num_split, Int)
.OP_END_FACTORY_REG(SplitV)
/**
*@brief Splits a tensor along dimension "split_dim" into "num_split" smaller tensors according to "size_splits".
*@par Inputs:
* One input:
* x: An ND Tensor. \n
*Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64
*@par Attributes:
*@li size_splits: A required list of int8, int16, int32, or int64. Specifies a list containing the sizes of each output tensor along the split dimension.
*@li split_dim: A required int8, int16, int32, or int64. Specifies the dimension along which to split. No default value.
*@li num_split: A required int8, int16, int32, or int64. Specifies the number of output tensors. No default value.
*@par Outputs:
*y: Dynamic output.A list of output tensors. Has the same type and format as "x".
*@attention Constraints:
*@li Each element in "size_splits" is greater than or equal to 1.
*@li "size_splits" and "num_split" have the same length.
Under the caffe framework, the conversion of slice_point through the cut point to cut segment is mapped to size_splits.
*@li The elements in "size_splits" sum to the size of dimension "split_dim".
Under the caffe framework,size_splits or axis transformat to split_dim.Only one can effect.
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator SplitV.
*/
REG_OP(SplitVD)
.INPUT(x, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8,
DT_UINT16, DT_UINT32, DT_UINT64, DT_FLOAT, DT_FLOAT16}))
.DYNAMIC_OUTPUT(y, TensorType({DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8,
DT_UINT16, DT_UINT32, DT_UINT64, DT_FLOAT, DT_FLOAT16}))
.REQUIRED_ATTR(size_splits, ListInt)
.REQUIRED_ATTR(split_dim, Int)
.REQUIRED_ATTR(num_split, Int)
.OP_END_FACTORY_REG(SplitVD)
/**
*@brief Concatenates a list of N tensors along the first dimension.
*@par Inputs:
* Two inputs, including:
* @li values: A list of Tensors. Must be one of the following types: int8, int16, int32, \n
* int64, uint8, uint16, uint32, uint64, float16, float32. \n
* Tensors to be concatenated. \n
* All must have size 1 in the first dimension and same shape.
* @li shape: A Tensor of the same type as "x". \n
* The final shape of the result. Should be equal to the shapes of any input
* but with the number of input values in the first dimension.
*@par Attributes:
* @li shape: A required list of ints.
* @li N: The numble of dynamic_input "values".
*@par Outputs:
*output_data: The concatenated tensor with same type as "values".
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator ParallelConcat.
*/
REG_OP(ParallelConcat)
.DYNAMIC_INPUT(values, TensorType({DT_FLOAT,DT_FLOAT16,DT_INT8,DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_UINT32,DT_UINT64}))
.OUTPUT(output_data, TensorType({DT_FLOAT,DT_FLOAT16,DT_INT8,DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_UINT32,DT_UINT64}))
.REQUIRED_ATTR(shape, ListInt)
.REQUIRED_ATTR(N, Int)
.OP_END_FACTORY_REG(ParallelConcat)
/**
*@brief Concatenates tensors along one dimension.
*@par Inputs:
* One input:
*x: Dynamic input.An NC1HWC0 or ND Tensor.
*Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64
*@par Attributes:
*concat_dim: A required int8, int16, int32, or int64. Specifies the dimension along which to concatenate. No default value.
*N: An attribute int8, int16, int32, or int64. Specifies the number of elements in "x". Defaults to "1".
*@par Outputs:
*y: A Tensor. Has the same type and format as "x".
*@attention Constraints:
*@li "x" is a list of at least 2 "tensor" objects of the same type.
*@li "concat_dim" is in the range [-len(x.shape), len(x.shape)].
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator ConcatV2.
*/
REG_OP(ConcatV2D)
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_INT64, DT_UINT64, DT_UINT32, DT_INT16, DT_UINT16, DT_UINT8}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT8, DT_INT64, DT_UINT64, DT_UINT32, DT_INT16, DT_UINT16, DT_UINT8}))
.REQUIRED_ATTR(concat_dim, Int)
.ATTR(N, Int, 1)
.OP_END_FACTORY_REG(ConcatV2D)
/**
*@brief Concatenates tensors along one dimension.
*@par Inputs:
* Two inputs, including:
*@li Dynamic input "x" is An NC1HWC0 or ND Tensor.
*Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64
*@li concat_dim: An int32, or int64. Specifies the dimension along which to concatenate.
*@par Attributes:
*N: An optional int8, int16, int32, or int64. Specifies the number of elements in "x". No default value.
*@par Outputs:
*y: A Tensor. Has the same type and format as "x".
*@attention Constraints:
* "x" is a list of at least 2 "tensor" objects of the same type.
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator ConcatV2.
*/
REG_OP(ConcatV2)
.DYNAMIC_INPUT(x, TensorType::BasicType())
.INPUT(concat_dim, TensorType::IndexNumberType())
.OUTPUT(y, TensorType::BasicType())
.ATTR(N, Int, 1)
.OP_END_FACTORY_REG(ConcatV2)
/**
*@brief Concatenates tensors along one dimension.
*@par Inputs:
* One input:
*x:Dynamic input. An NC1HWC0 or ND Tensor.
*Must be one of the following types: float16, float32, int32, int8, int16, int64, uint8, uint16, uint32, uint64
*@par Attributes:
*@li concat_dim: A required int8, int16, int32, or int64. Specifies the dimension along which to concatenate. No default value.
*@li N: An optional int8, int16, int32, or int64. Specifies the number of elements in "x". No default value.
*@par Outputs:
*y: A Tensor. Has the same type and format as "x".
*@attention Constraints:
*@li "x" is a list of at least 2 "tensor" objects of the same type.
*@li "concat_dim" is in the range [-len(x.shape), len(x.shape)].
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator Concat.
*/
REG_OP(ConcatD)
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT,DT_FLOAT16,DT_INT8,DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_UINT32,DT_UINT64}))
.OUTPUT(y, TensorType({DT_FLOAT,DT_FLOAT16,DT_INT8,DT_INT16,DT_INT32,DT_INT64,DT_UINT8,DT_UINT16,DT_UINT32,DT_UINT64}))
.REQUIRED_ATTR(concat_dim, Int)
.ATTR(N, Int, 1)
.OP_END_FACTORY_REG(ConcatD)
/**
*@brief Concatenates tensors along one dimension.
*@par Inputs:
* Two inputs, including:
*@li x: Dynamic input.An NC1HWC0 or ND Tensor.
*Must be one of the following types: float16, float32, double, int32,
* uint8, int16, int8, complex64, int64, qint8, quint8, qint32, uint16,
* complex128, uint32, uint64, qint16, quint16.
*@li concat_dim: An int32, or int64. Specifies the dimension along which to concatenate.
*@par Attributes:
*N: An optional int8, int16, int32, or int64. Specifies the number of elements in "x".
*@par Outputs:
*y: A Tensor. Has the same type and format as "x".
*@attention Constraints:
*@li "x" is a list of at least 2 "tensor" objects of the same type.
*@li "concat_dim" is in the range [-len(x.shape), len(x.shape)].
*@par Third-party framework compatibility
* Compatible with the TensorFlow operator Concat.
*/
REG_OP(Concat)
.DYNAMIC_INPUT(x, TensorType::BasicType())
.INPUT(concat_dim, TensorType::IndexNumberType())
.OUTPUT(y, TensorType::BasicType())
.ATTR(N, Int, 1)
.OP_END_FACTORY_REG(Concat)
/**
*@brief Packs the list of tensors in values into a tensor with rank one higher than each tensor in
* values, by packing them along the axis dimension. Given a list of length N of tensors of
* shape (A, B, C); if axis == 0 then the output tensor will have the shape (N, A, B, C).
*@par Inputs:
* x: A list of N Tensors. Must be one of the following types: int8, int16, int32,
* int64, uint8, uint16, uint32, uint64, float16, float32, bool.
*@par Attributes:
*@li axis: A optional int, defaultvalue is 0.
* Dimension along which to pack. The range is [-(R+1), R+1).
*@li N: A required int. Number of tensors.
*@par Outputs:
*y: A Tensor. Has the same type as "x".
*@par Third-party framework compatibility
*Compatible with the TensorFlow operator Pack.
*/
REG_OP(Pack)
.DYNAMIC_INPUT(x, TensorType::BasicType())
.OUTPUT(y, TensorType::BasicType())
.ATTR(axis, Int, 0)
.REQUIRED_ATTR(N, Int)
.OP_END_FACTORY_REG(Pack)
/**
*@brief Computes offsets of concat inputs within its output.
*@par Inputs:
*Two inputs, including:
* @li concat_dim: A Tensor of type int32.
* @li x: A list of 1D Tensor objects of type int32.
*@par Attributes:
*N: A required int.
*@par Outputs:
*y: A Tensor list with same type as "x".
*@par Third-party framework compatibility
*@ Compatible with the TensorFlow operator ConcatOffset.
*/
REG_OP(ConcatOffset)
.INPUT(concat_dim, TensorType({DT_INT32}))
.DYNAMIC_INPUT(x, TensorType({DT_INT32}))
.DYNAMIC_OUTPUT(y, TensorType({DT_INT32}))
.REQUIRED_ATTR(N, Int)
.OP_END_FACTORY_REG(ConcatOffset)
/**
*@brief Computes offsets of concat inputs within its output.
*@par Inputs:
*Two inputs, including:
* @li concat_dim: A Tensor of type int32.
* @li x: A list of 1D Tensor objects of type int32.
*@par Attributes:
*@li Concat_dim: A required int. Must be within the rank of input "x".
*@li N: A required int.
*@par Outputs:
*y: A Tensor list with same type as "x".
*@par Third-party framework compatibility
*@ Compatible with the TensorFlow operator ConcatOffset.
*/
REG_OP(ConcatOffsetD)
.DYNAMIC_INPUT(x, TensorType({DT_INT32}))
.DYNAMIC_OUTPUT(y, TensorType({DT_INT32}))
.REQUIRED_ATTR(concat_dim, Int)
.REQUIRED_ATTR(N, Int)
.OP_END_FACTORY_REG(ConcatOffsetD)
} // namespace ge
#endif // GE_OP_SPLIT_COMBINATION_OPS_H