You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/third_party/fwkacllib/inc/ops/quantize_ops.h

149 lines
5.2 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GE_OP_QUANTIZE_OPS_H
#define GE_OP_QUANTIZE_OPS_H
#include "graph/operator_reg.h"
namespace ge {
/**
* @brief Dequantizes the input tensor into a float tensor.
* [min_range, max_range] are float32 tensors that specify the range
* for "y". \n
* The "mode" attribute controls exactly which calculations are used to convert\n
* the float values to their quantized equivalents.
* @par Inputs:
* @li x: A Tensor. Must be one of the following types: int8, uint8,
* int32.
* @li min_range: A Tensor of type float32.
* Specifies the minimum scalar value possibly produced for the input.
* @li max_range: A Tensor of type float32.
* Specifies the maximum scalar value possibly produced for the input.
* @par Attributes:
* mode: An optional string from: "MIN_COMBINED", "MIN_FIRST", and "SCALED".
* Defaults to "MIN_COMBINED".
* @par Outputs:
* y: A dictionary of type float32.
* @attention Constraints:
* @li "min_range" and "max_range" have the same shapes.
* @li "x" and "y" have the same shapes.
* @par Third-party framework compatibility
* Compatible with the TensorFlow operator Dequantize.
*/
REG_OP(Dequantize)
.INPUT(x, TensorType(DT_QINT8, DT_QUINT8, DT_QINT32, DT_QINT16, DT_QUINT16))
.INPUT(min_range, TensorType{DT_FLOAT})
.INPUT(max_range, TensorType{DT_FLOAT})
.OUTPUT(y, TensorType({DT_FLOAT}))
.ATTR(mode, String, "MIN_COMBINED")
.OP_END_FACTORY_REG(Dequantize)
/**
*@brief Quantizes the input.
*@par Inputs:
*x: An NC1HWC0 tensor of type float16 or float32, specifying the input.
*@par Attributes:
*@li scale: A required float32, specifying the scaling ratio.
*@li offset: A required float16, specifying the offset.
*@li sqrt_mode: A optional bool, specifying whether to perform square root on "scale", either "True" or "False". Defaults to "False".
*@li round_mode: An optional string, specifying the float16 to int8 cast type.
* The value range is [Round, Floor, Ceiling, Truncate]. Defaults to "Round".
*@par Outputs:
*y: The quantized output tensor of type int8 and with format NC1HWC0.
*@par Third-party framework compatibility
* It is a custom operator. It has no corresponding operator in Caffe.
*/
REG_OP(AscendQuant)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32}))
.OUTPUT(y, TensorType({DT_INT8}))
.REQUIRED_ATTR(scale, Float)
.REQUIRED_ATTR(offset, Float)
.ATTR(sqrt_mode, Bool, false)
.ATTR(round_mode, String, "Round")
.OP_END_FACTORY_REG(AscendQuant)
/**
*@brief Dequantizes the input.
*@par Inputs:
*@li x: An NC1HWC0 tensor of type int32, specifying the input.
*@li deq_scale: An NC1HWC0 tensor of type float16 or uint64, specifying the scaling ratio.
*@par Attributes:
*@li sqrt_mode: A optional bool, specifying whether to perform square root on "scale", either "True" or "False". Defaults to "False".
*@li relu_flag: A optional bool, specifying whether to perform ReLU, either "True" or "False". Defaults to "False".
*@li dtype: A optional int32, specifying the output data type. Defaults to "DT_FLOAT".
*@par Outputs:
*y: The dequantized output tensor of type float16 or float32 and with format NC1HWC0.
*@par Third-party framework compatibility
* It is a custom operator. It has no corresponding operator in Caffe.
*/
REG_OP(AscendDequant)
.INPUT(x, TensorType({DT_INT32}))
.INPUT(deq_scale, TensorType({DT_FLOAT16, DT_UINT64}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(sqrt_mode, Bool, false)
.ATTR(relu_flag, Bool, false)
.ATTR(dtype, Int, DT_FLOAT)
.OP_END_FACTORY_REG(AscendDequant)
REG_OP(AscendAntiQuant)
.INPUT(x, TensorType({DT_INT8}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.REQUIRED_ATTR(scale, Float)
.REQUIRED_ATTR(offset, Float)
.ATTR(dtype, Int, DT_FLOAT)
.ATTR(sqrt_mode, Bool, false)
.OP_END_FACTORY_REG(AscendAntiQuant)
REG_OP(AscendDequantS16)
.INPUT(x0, TensorType({DT_INT32}))
.INPUT(deq_scale, TensorType({DT_UINT64}))
.OPTIONAL_INPUT(x1, TensorType({DT_INT16}))
.OUTPUT(y, TensorType({DT_INT16}))
.ATTR(relu_flag, Bool, false)
.OP_END_FACTORY_REG(AscendDequantS16)
REG_OP(AscendRequant)
.INPUT(x, TensorType({DT_INT32}))
.INPUT(req_scale, TensorType({DT_UINT64}))
.OUTPUT(y, TensorType({DT_INT8}))
.ATTR(relu_flag, Bool, false)
.OP_END_FACTORY_REG(AscendRequant)
REG_OP(AscendRequantS16)
.INPUT(x, TensorType({DT_INT16}))
.INPUT(req_scale, TensorType({DT_UINT64}))
.OPTIONAL_INPUT(x1, TensorType({DT_INT16}))
.OUTPUT(y, TensorType({DT_INT8}))
.OUTPUT(y1, TensorType({DT_INT16}))
.ATTR(dual_output, Bool, false)
.ATTR(relu_flag, Bool, false)
.OP_END_FACTORY_REG(AscendRequantS16)
} // namespace ge
#endif // GE_OP_QUANTIZE_OPS_H