You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/third_party/fwkacllib/inc/ops/control_flow_ops.h

408 lines
15 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*!
* \file control_flow_ops.h
* \brief
*/
#ifndef OPS_BUILT_IN_OP_PROTO_INC_CONTROL_FLOW_OPS_H_
#define OPS_BUILT_IN_OP_PROTO_INC_CONTROL_FLOW_OPS_H_
#include "graph/operator_reg.h"
#include "graph/operator.h"
namespace ge {
/**
*@brief Forwards the value of an available tensor from input "x" to output "y".
* Merge waits for at least one of the input tensors to become available.
* It is usually combined with Switch to implement branching.
* Merge forwards the first tensor to become available to output "y",
* and sets "value_index" the index of the tensor in inputs . \n
*@par Inputs:
*x: The input tensors, one of which will become available.
* Must be one of the following types: float16, float32, float64, int8,
* int16, int32, int64, uint8, uint16, uint32, uint64, bool . It's a dynamic input. \n
*@par Outputs:
*@li y: The available tensor. Has the same type as "x".
*@li value_index: A scalar of type int32, for the index of the chosen input
* tensor . \n
*@see Switch()
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator Merge.
*/
REG_OP(Merge)
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(value_index, TensorType({DT_INT32}))
.OP_END_FACTORY_REG(Merge)
/**
*@brief Forwards the value of an available tensor from input "x" to output "y".
* Merge waits for at least one of the input tensors to become available.
* It is usually combined with Switch to implement branching.
* Merge forwards the first tensor to become available to output "y",
* and sets "value_index" the index of the tensor in inputs . \n
*@par Inputs:
*x: The input tensors, one of which will become available.
* Must be one of the following types: float16, float32, float64, int8,
* int16, int32, int64, uint8, uint16, uint32, uint64, bool . It's a dynamic input. \n
*@par Outputs:
*@li y: The available tensor. Has the same type as "x".
*@li value_index: A scalar of type int32, for the index of the chosen input
* tensor . \n
*@see Switch() | Merge()
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator RefMerge.
*/
REG_OP(RefMerge)
.DYNAMIC_INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(value_index, TensorType({DT_INT32}))
.OP_END_FACTORY_REG(RefMerge)
/**
*@brief Forwards "data" to the output port determined by "pred".
* If "pred" is "true", the data input is forwarded to "output_true".
* Otherwise, the data is forwarded to "output_false" . \n
*@par Inputs:
*@li data: The tensor to be forwarded. \ n
* Must be one of the following types: float16, float32, float64,
* int8, int16, int32, int64, uint8, uint16, uint32, uint64, bool.
*@li pred: A boolean scalar. The output port that will receive data . \n
*@par Outputs:
*@li output_false: If "pred" is "false", data will be forwarded to this output.
* Has the same type as "data".
*@li output_true: If "pred" is "true", data will be forwarded to this output.
* Has the same type as "data" . \n
*@see Merge()
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator Switch.
*/
REG_OP(Switch)
.INPUT(data, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.INPUT(pred, TensorType({DT_BOOL}))
.OUTPUT(output_false, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(output_true, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OP_END_FACTORY_REG(Switch)
/**
*@brief Forwards "data" to the output port determined by "pred".
* If "pred" is "true", the data input is forwarded to "output_true".
* Otherwise, the data is forwarded to "output_false" . \n
*@par Inputs:
*@li data: The ref tensor to be forwarded.
* Must be one of the following types: float16, float32, float64,
* int8, int16, int32, int64, uint8, uint16, uint32, uint64, bool.
*@li pred: A boolean scalar. The output port that will receive data . \n
*@par Outputs:
*@li output_false: If "pred" is "false", data will be forwarded to this output.
* Has the same type as "data".
*@li output_true: If "pred" is "true", data will be forwarded to this output.
* Has the same type as "data" . \n
*@see Merge() | Switch()
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator RefSwitch.
*/
REG_OP(RefSwitch)
.INPUT(data, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.INPUT(pred, TensorType({DT_BOOL}))
.OUTPUT(output_false, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(output_true, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OP_END_FACTORY_REG(RefSwitch)
/**
*@brief Forwards "data" to the output port determined by "pred_value" . \n
*@par Inputs:
*@li data: The tensor to be forwarded. \ n
* Must be one of the following types: float16, float32, float64,
* int8, int16, int32, int64, uint8, uint16, uint32, uint64, bool.
*@li pred_value: A int64 tensor which determines the output port that will receive data . \n
*@par Outputs:
*output: The output tensors, one of which will become available.
* Has the same type as "data".
*/
REG_OP(SwitchN)
.INPUT(data, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.INPUT(pred_value, TensorType({DT_INT64}))
.DYNAMIC_OUTPUT(output, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OP_END_FACTORY_REG(SwitchN)
/**
*@brief Creates or finds a child frame, and makes "x" available to the child
* frame. This op is used together with Exit to create loops in the graph.
* The Executor uses the unique "frame_name" to identify frames.
* If "is_constant" is "true", output "y" is a constant in the child
* frame; otherwise it may be changed in the child frame . \n
*@par Inputs:
*x: The tensor to be made available to the child frame.
* Must be one of the following types: float16, float32, float64, int8,
* int16, int32, int64, uint8, uint16, uint32, uint64, bool . \n
*@par Attributes:
*@li frame_name: A required string. The name of the child frame.
*@li is_constant: A required bool. If true, the output is constant in
* the child frame . \n
*@par Outputs:
*y: A Tensor. Has the same type as "x" . \n
*@see Exit()
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator Enter.
*/
REG_OP(Enter)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.REQUIRED_ATTR(frame_name, String)
.REQUIRED_ATTR(is_constant, Bool)
.OP_END_FACTORY_REG(Enter)
/**
*@brief Creates or finds a child frame, and makes "x" available to the child
* frame. This op is used together with Exit to create loops in the graph.
* The Executor uses the unique "frame_name" to identify frames.
* If "is_constant" is "true", output "y" is a constant in the child
* frame; otherwise it may be changed in the child frame . \n
*@par Inputs:
*x: The tensor to be made available to the child frame.
* Must be one of the following types: float16, float32, float64, int8,
* int16, int32, int64, uint8, uint16, uint32, uint64, bool . \n
*@par Attributes:
*@li frame_name: A required string. The name of the child frame.
*@li is_constant: A required bool. If true, the output is constant in
* the child frame . \n
*@par Outputs:
*y: A tensor. Has the same type as "x" . \n
*@see Exit() | Enter()
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator RefEnter.
*/
REG_OP(RefEnter)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.REQUIRED_ATTR(frame_name, String)
.REQUIRED_ATTR(is_constant, Bool)
.OP_END_FACTORY_REG(RefEnter)
/**
*@brief Forwards the input to the output. This op represents the loop
* termination condition . \n
*@par Inputs:
*x: A boolean scalar. The condition of the Switch op . \n
*@par Outputs:
*y: The tensor "x" . \n
*@see Switch()
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator LoopCond.
*/
REG_OP(LoopCond)
.INPUT(x, TensorType({DT_BOOL}))
.OUTPUT(y, TensorType({DT_BOOL}))
.OP_END_FACTORY_REG(LoopCond)
/**
*@brief Makes the input available to the next iteration . \n
*@par Inputs:
*x: The tensor to be made available to the next iteration.
* Must be one of the following types: float16, float32, float64, int8,
* int16, int32, int64, uint8, uint16, uint32, uint64, bool . \n
*@par Outputs:
*y: A Tensor. Has the same type as "x" . \n
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator NextIteration.
*/
REG_OP(NextIteration)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OP_END_FACTORY_REG(NextIteration)
/**
*@brief Makes the input available to the next iteration . \n
*@par Inputs:
*x: The tensor to be made available to the next iteration.
* Must be one of the following types: float16, float32, float64, int8,
* int16, int32, int64, uint8, uint16, uint32, uint64, bool . \n
*@par Outputs:
*y: A tensor. Has the same type as "x" . \n
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator RefNextIteration.
*/
REG_OP(RefNextIteration)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OP_END_FACTORY_REG(RefNextIteration)
/**
*@brief Exits the current frame to its parent frame . \n
*@par Inputs:
*x: The tensor to be made available to the parent frame.
* Must be one of the following types: float16, float32, float64, int8,
* int16, int32, int64, uint8, uint16, uint32, uint64, bool . \n
*@par Outputs:
*y: A Tensor. Has the same type as "x" . \n
*@see Enter()
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator Exit.
*/
REG_OP(Exit)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OP_END_FACTORY_REG(Exit)
/**
*@brief Exits the current frame to its parent frame . \n
*@par Inputs:
*x: The tensor to be made available to the parent frame.
* Must be one of the following types: float16, float32, float64, int8,
* int16, int32, int64, uint8, uint16, uint32, uint64, bool . \n
*@par Outputs:
*y: A tensor. Has the same type as "x" . \n
*@see Enter() | Exit()
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator RefExit.
*/
REG_OP(RefExit)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
DT_INT8, DT_INT16, DT_INT32, DT_INT64, DT_UINT8, DT_UINT16, DT_UINT32,
DT_UINT64, DT_BOOL}))
.OP_END_FACTORY_REG(RefExit)
/**
*@brief Only useful as a placeholder for control edges.
* It is similar to a no-op that always produces a live control output
* even when some control inputs are dead . \n
*@par Third-party framework compatibility
*@Compatible with the TensorFlow operator ControlTrigger.
*/
REG_OP(ControlTrigger)
.OP_END_FACTORY_REG(ControlTrigger)
/**
*@brief Returns index of shape in the map.
*@par Inputs:
* Three inputs, including:
*@li x: One dimensional tensore of type int32, specifying queried shape, max size is 8.
*@li data_seq: One dimensional tensore of type int32, specifying the mapped table is queried.
*@li level_index: One dimensional tensore of type int32, specifying secondary index. \n
*@par Outputs:
*@li y: A Tensor with shape [batch, 8], of type int32, specifying index of shape in the map.
*@par Third-party framework compatibility
* It is a custom operator. It has no corresponding operator in Caffe.
*/
REG_OP(MapIndex)
.INPUT(x, TensorType({DT_INT32}))
.INPUT(data_seq, TensorType({DT_INT32}))
.OPTIONAL_INPUT(level_index, TensorType({DT_INT32}))
.OUTPUT(y, TensorType({DT_INT32}))
.OP_END_FACTORY_REG(MapIndex)
} // namespace ge
#endif // OPS_BUILT_IN_OP_PROTO_INC_CONTROL_FLOW_OPS_H_