You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/host_kernels/dynamic_stitch_kernel.cc

226 lines
9.1 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "host_kernels/dynamic_stitch_kernel.h"
#include <securec.h>
#include <memory>
#include "common/fp16_t.h"
#include "common/ge_inner_error_codes.h"
#include "common/math/math_util.h"
#include "common/op/ge_op_utils.h"
#include "common/types.h"
#include "framework/common/debug/ge_log.h"
#include "graph/utils/type_utils.h"
#include "inc/kernel_factory.h"
namespace ge {
namespace {
const int kDoubleAttrN = 2;
const int kFirstOutputDescIdx = 0;
const int kMergedShapeSecondDim = 1;
const size_t kNullTensorDimNum = 1;
const int64_t kNullTensorDimValue = 0;
const std::set<DataType> kSupportedTypeSet = {DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32,
DT_INT64, DT_BOOL, DT_FLOAT16, DT_FLOAT, DT_DOUBLE};
} // namespace
Status DynamicStitchKernel::Compute(const OpDescPtr op_desc_ptr, const vector<ConstGeTensorPtr> &input,
vector<GeTensorPtr> &v_output) {
GELOGD("DynamicStitch Kernel in.");
Status validate_ret = ValidateParams(op_desc_ptr, input);
if (validate_ret != SUCCESS) {
GELOGW("Dynamic stitch kernel params validate failed.");
return NOT_CHANGED;
}
// OutputDesc size is not null, validated before
GeTensorPtr output_ptr = MakeShared<GeTensor>(op_desc_ptr->GetOutputDesc(kFirstOutputDescIdx));
if (output_ptr == nullptr) {
GELOGW("Fail to malloc output.");
return NOT_CHANGED;
}
Status ret = GenData(input, output_ptr);
if (ret != SUCCESS) {
GELOGW("Dynamic stitch folding failed.");
return NOT_CHANGED;
}
v_output.push_back(output_ptr);
GELOGD("Dynamic stitch end.");
return SUCCESS;
}
Status DynamicStitchKernel::ValidateParams(const OpDescPtr &op_desc_ptr, const std::vector<ConstGeTensorPtr> &input) {
if (op_desc_ptr == nullptr) {
GELOGW("Input op_desc is nullptr.");
return PARAM_INVALID;
}
if (op_desc_ptr->GetOutputsSize() == 0) {
GELOGW("Current output_desc is empty.");
return PARAM_INVALID;
}
// validate input
// input[0]~input[N-1] is indices, input[N]~input[2N-1] is data
if (input.empty()) {
GELOGI("Input is empty. Ignore dynamic stitch kernel.");
return NOT_CHANGED;
}
for (const auto &in : input) {
if (in == nullptr) {
GELOGW("input is nullptr.");
return PARAM_INVALID;
}
}
// validate attrs
if (!(AttrUtils::GetInt(op_desc_ptr, ATTR_NAME_N, n_))) {
GELOGW("Attr %s is not exist.", ATTR_NAME_N.c_str());
return NOT_CHANGED;
}
// validate attr N and input.size
if ((kDoubleAttrN * n_) > static_cast<int>(input.size())) {
GELOGW("Input size %zu is not not match with attr %d. Ignore dynamic stitch kernel.", input.size(), n_);
return NOT_CHANGED;
}
// validate supported datatype
DataType data_type = input[n_]->GetTensorDesc().GetDataType();
if (kSupportedTypeSet.find(data_type) == kSupportedTypeSet.end()) {
GELOGW("Input data_type %s is not supported. Please check IR definition. Ignore dynamic stitch kernel.",
TypeUtils::DataTypeToSerialString(data_type).c_str());
return NOT_CHANGED;
}
return SUCCESS;
}
void DynamicStitchKernel::ComputeMergedShape(const vector<ConstGeTensorPtr> &input, GeShape &merged_shape) {
// Safety note: index [1~2*n_] for input is valid, and all input is not null, validated in ValidateParams
// merged.shape = [max(indices)] + step
// 1. Compute merged first dim, which is the max index.
int32_t merged_first_dim = 0;
int64_t indices_shape_size = 0;
for (int i = 0; i < n_; i++) {
indices_shape_size = input[i]->GetTensorDesc().GetShape().GetShapeSize();
indices_shape_size = indices_shape_size == 0 ? 1 : indices_shape_size;
const int32_t *input_indices = reinterpret_cast<const int32_t *>(input[i]->GetData().data());
for (int64_t j = 0; j < indices_shape_size; j++) {
merged_first_dim = std::max(merged_first_dim, input_indices[j]);
}
}
// 2. Compute step, which is follow : step = data[t].shape - indices[t].shape
size_t indices_dim_num = input[0]->GetTensorDesc().GetShape().GetDimNum();
GeShape data_shape = input[n_]->GetTensorDesc().GetShape();
int64_t step = (data_shape.GetDimNum() == indices_dim_num) ? 0 : data_shape.GetDim(indices_dim_num);
vector<int64_t> merged_dim_vec = {merged_first_dim + 1};
if (step > 0) {
merged_dim_vec.emplace_back(step);
GELOGD("merged_shape is [ %ld, %ld].", merged_first_dim, step);
}
merged_shape = GeShape(merged_dim_vec);
GELOGD("merged_shape is [ %ld ].", merged_first_dim);
}
Status DynamicStitchKernel::GenData(const vector<ConstGeTensorPtr> &input, GeTensorPtr &output_ptr) {
// Safety note: index [1~2*n_] for input is valid, and all input is not null, validated in ValidateParams
GeShape merged_shape;
ComputeMergedShape(input, merged_shape);
auto data_type = input[n_]->GetTensorDesc().GetDataType();
// 1.calc output data size
auto output_size = merged_shape.GetShapeSize();
int64_t data_size = GetSizeByDataType(data_type);
auto step = merged_shape.GetDim(kMergedShapeSecondDim);
if (!CheckInt64MulOverflow(output_size, data_size) || !CheckInt64MulOverflow(step, data_size)) {
GELOGW("Check int64 mul overflow failed. Output_size is %ld, data_size is %ld, step is %ld.", output_size,
data_size, step);
return NOT_CHANGED;
}
auto allowance = output_size * data_size;
auto data_unit = step > 0 ? step * data_size : data_size;
// 2.allocate memery for output
std::unique_ptr<uint8_t[]> buf(new (std::nothrow) uint8_t[allowance]);
if (buf == nullptr) {
GELOGW("new buffer failed");
return INTERNAL_ERROR;
}
// 3.copy data from input_data along with the sequence of input_indices
Status stitch_ret = StitchDataFollowIndices(data_unit, input, allowance, buf);
if (stitch_ret != SUCCESS) {
GELOGW("Stitch data follow index failed.");
return NOT_CHANGED;
}
output_ptr->MutableTensorDesc().SetDataType(data_type);
output_ptr->MutableTensorDesc().SetShape(merged_shape);
Status ret = output_ptr->SetData(buf.get(), allowance);
if (ret != GRAPH_SUCCESS) {
GELOGW("set data failed");
return NOT_CHANGED;
}
return SUCCESS;
}
Status DynamicStitchKernel::StitchDataFollowIndices(int64_t data_unit, const vector<ConstGeTensorPtr> &input,
int64_t allowance, std::unique_ptr<uint8_t[]> &buf) {
// Safety note: index [1~2*n_] for input is valid, and all input is not null, validated in ValidateParams
int64_t dst_offset = 0;
int64_t src_offset = 0;
std::set<int32_t> indices_set;
for (int i = 0; i < n_; i++) {
GeShape indices_shape = input[i]->GetTensorDesc().GetShape();
size_t indices_dim_num = indices_shape.GetDimNum();
// skip null indices tensor
if (indices_dim_num == kNullTensorDimNum && indices_shape.GetDim(0) == kNullTensorDimValue) {
GELOGD("Input indices[%d] has null tensor, skip it.", i);
continue;
}
auto indices_shape_size = indices_shape.GetShapeSize();
// to normalize logic, assume scalar as vector with shape of [1].
indices_shape_size = (indices_shape_size == 0) ? 1 : indices_shape_size;
// all index for input is less than size of input
const int32_t *input_indices = reinterpret_cast<const int32_t *>(input[i]->GetData().data());
const uint8_t *input_data = input[i + n_]->GetData().data();
for (int64_t j = 0; j < indices_shape_size; j++) {
// if index repeated, need new data replace old data , so give more allowance
if (indices_set.find(input_indices[j]) != indices_set.end()) {
if (ge::CheckInt64AddOverflow(input_indices[j], data_unit) != SUCCESS) {
GELOGW("Check int64 mul overflow failed. Indices is %ld, data_unit is %ld.", input_indices[j], data_unit);
return NOT_CHANGED;
}
allowance += data_unit;
}
indices_set.insert(input_indices[j]);
if (!CheckInt64MulOverflow(input_indices[j], data_unit)) {
GELOGW("Check int64 mul overflow failed. Indices is %ld, data_unit is %ld.", input_indices[j], data_unit);
return NOT_CHANGED;
}
dst_offset = input_indices[j] * data_unit;
src_offset = j * data_unit;
auto protected_size =
allowance < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) ? allowance : static_cast<int64_t>(SECUREC_MEM_MAX_LEN);
auto ret = memcpy_s(buf.get() + dst_offset, protected_size, input_data + src_offset, data_unit);
if (ret != EOK) {
GELOGW("Memory copy failed.");
return NOT_CHANGED;
}
allowance -= data_unit;
}
}
return SUCCESS;
}
REGISTER_KERNEL(DYNAMICSTITCH, DynamicStitchKernel);
} // namespace ge