You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/host_kernels/reduce_prod_kernel.cc

296 lines
12 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "host_kernels/reduce_prod_kernel.h"
#include <memory>
#include <set>
#include "common/math/math_util.h"
#include "common/op/ge_op_utils.h"
#include "common/types.h"
#include "framework/common/debug/ge_log.h"
#include "framework/common/ge_inner_error_codes.h"
#include "host_kernels/kernel_utils.h"
#include "graph/utils/type_utils.h"
#include "inc/kernel_factory.h"
namespace ge {
namespace {
const size_t kReduceProdDataIndex = 0;
const size_t kReduceProdAxisIndex = 1;
const size_t kReduceProdMaxAxisRank = 1;
const size_t kReduceProdInputOnlyData = 1;
const size_t kReduceProdInputSize = 2;
const std::set<DataType> kReduceProdSupportedType = {DT_INT32};
} // namespace
Status ReduceProdKernel::ReduceProdCheck(const ge::OpDescPtr &op_desc_ptr,
const std::vector<ge::ConstGeTensorPtr> &input) const {
if (op_desc_ptr == nullptr) {
GELOGW("Input opdesc is nullptr.");
return PARAM_INVALID;
}
if (input.size() != kReduceProdInputSize) {
if (input.size() == kReduceProdInputOnlyData) {
// Input only data, which means calculate product for all elements in data_tensor.
GELOGI("ReduceProd node input size is 1, which does not have param axis, node name %s",
op_desc_ptr->GetName().c_str());
return NOT_CHANGED;
}
GELOGW("Unexpected ReduceProd node, node input size: %zu, node name: %s", input.size(),
op_desc_ptr->GetName().c_str());
return PARAM_INVALID;
}
ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex);
GE_CHECK_NOTNULL(data_tensor);
GE_CHECK_NOTNULL(axis_tensor);
if (axis_tensor->GetTensorDesc().GetShape().GetDimNum() > kReduceProdMaxAxisRank) {
GELOGW("Axis must be at most rank 1, node: %s", op_desc_ptr->GetName().c_str());
return PARAM_INVALID;
}
DataType data_type = data_tensor->GetTensorDesc().GetDataType();
if (kReduceProdSupportedType.find(data_type) == kReduceProdSupportedType.end()) {
GELOGW("ReduceProdKernel data type %s not support, node name: %s",
TypeUtils::DataTypeToSerialString(data_type).c_str(), op_desc_ptr->GetName().c_str());
return PARAM_INVALID;
}
return SUCCESS;
}
Status ReduceProdKernel::AxisCal(const std::vector<ge::ConstGeTensorPtr> &input) {
ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex);
// support: compute for the first element of axis.
vector<int64_t> data_dims = data_tensor->GetTensorDesc().GetShape().GetDims();
size_t data_dim_size = data_dims.size();
int32_t *axis = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(axis_tensor->GetData().GetData()));
GE_CHECK_NOTNULL(axis);
if (static_cast<size_t>(*axis) >= data_dim_size) {
GELOGW("axis is out of rank of data_dims, axis is %d.", *axis);
return PARAM_INVALID;
}
axis_dim_ = data_dims[static_cast<size_t>(*axis)];
head_dim_ = 1;
end_dim_ = 1;
bool axis_appear = false;
for (size_t i = 0; i < data_dim_size; i++) {
if (i == static_cast<size_t>(*axis)) {
axis_appear = true;
continue;
}
// data_dims is the vector of dims, element in data_dims isn't negative.
if (axis_appear) {
if (data_dims[i] != 0 && end_dim_ > (INT64_MAX / data_dims[i])) {
GELOGW("Product is overflow. multiplier 1: %ld. multiplier 2: %ld.", end_dim_, data_dims[i]);
return INTERNAL_ERROR;
}
end_dim_ *= data_dims[i];
} else {
if (data_dims[i] != 0 && head_dim_ > (INT64_MAX / data_dims[i])) {
GELOGW("Product is overflow. multiplier 1: %ld. multiplier 2: %ld.", head_dim_, data_dims[i]);
return INTERNAL_ERROR;
}
head_dim_ *= data_dims[i];
}
}
return SUCCESS;
}
Status ReduceProdKernel::DataCal(const std::vector<ge::ConstGeTensorPtr> &input, ge::GeTensorPtr output_ptr) {
ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
DataType data_dtype = data_tensor->GetTensorDesc().GetDataType();
if (data_dtype == DT_INT32) {
int32_t *input_data = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(data_tensor->GetData().GetData()));
GE_CHECK_NOTNULL(input_data);
size_t data_num = data_tensor->GetData().size() / sizeof(int32_t);
unique_ptr<int32_t[]> buf(new (std::nothrow) int32_t[data_num]());
if (buf == nullptr) {
GELOGW("new buf failed");
return INTERNAL_ERROR;
}
int32_t tmp_x = 1;
int32_t tmp_y = 1;
for (int64_t i = 0; i < head_dim_; ++i) {
for (int64_t j = 0; j < end_dim_; ++j) {
// all index for input_data is less than size of input_data
tmp_x = input_data[static_cast<size_t>(i * end_dim_ * axis_dim_ + j)];
for (int64_t k = 1; k < axis_dim_; ++k) {
tmp_y = input_data[static_cast<size_t>(i * end_dim_ * axis_dim_ + j + k * end_dim_)];
if (ge::CheckInt32MulOverflow(tmp_x, tmp_y) != SUCCESS) {
GELOGW("Product is overflow. multiplier 1: %d. multiplier 2: %d.", tmp_x, tmp_y);
return INTERNAL_ERROR;
}
tmp_x *= tmp_y;
}
buf[static_cast<size_t>(i * end_dim_ + j)] = tmp_x;
}
}
GE_IF_BOOL_EXEC(output_ptr->SetData(reinterpret_cast<uint8_t *>(buf.get()),
static_cast<size_t>(head_dim_ * end_dim_ * sizeof(int32_t))) != GRAPH_SUCCESS,
GELOGW("set data failed");
return INTERNAL_ERROR);
}
return SUCCESS;
}
void ReduceProdKernel::ShapeCal(const ge::OpDescPtr &op_desc_ptr, const std::vector<ge::ConstGeTensorPtr> &input,
ge::GeTensorPtr output_ptr) {
ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex);
vector<int64_t> data_dims = data_tensor->GetTensorDesc().GetShape().GetDims();
int32_t data_dim_size = static_cast<int32_t>(data_dims.size());
const uint8_t *axis_data = axis_tensor->GetData().GetData();
GE_CHECK_NOTNULL_EXEC(axis_data, return);
int32_t axis = *(const_cast<int32_t *>(reinterpret_cast<const int32_t *>(axis_data)));
bool keep_dims = false;
if (!AttrUtils::GetBool(op_desc_ptr, "keep_dims", keep_dims)) {
GELOGI("Get the attr keep_dims was failed.");
}
if (keep_dims) {
for (int32_t i = 0; i < data_dim_size; i++) {
if (i == axis) {
data_dims[i] = 1;
}
}
} else {
vector<int64_t> tmp_dims;
for (int32_t i = 0; i < data_dim_size; i++) {
if (i != axis) {
tmp_dims.push_back(data_dims[i]);
}
}
data_dims.clear();
data_dims = tmp_dims;
}
output_ptr->MutableTensorDesc().SetShape(GeShape(data_dims));
}
Status ReduceProdKernel::ComputeNoAxis(const ge::OpDescPtr &op_desc_ptr, const std::vector<ConstGeTensorPtr> &input,
ge::GeTensorPtr output_ptr) {
ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
GE_CHECK_NOTNULL(data_tensor);
if (data_tensor->GetData().size() == 0) {
GELOGW("ReduceProdKernel data size of inputs is 0, node node: %s", op_desc_ptr->GetName().c_str());
return PARAM_INVALID;
}
DataType data_type = data_tensor->GetTensorDesc().GetDataType();
if (kReduceProdSupportedType.find(data_type) == kReduceProdSupportedType.end()) {
GELOGW("ReduceProdKernel data type %s not support, node name: %s",
TypeUtils::DataTypeToSerialString(data_type).c_str(), op_desc_ptr->GetName().c_str());
return PARAM_INVALID;
}
if (data_type == DT_INT32) {
int32_t *input_data = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(data_tensor->GetData().GetData()));
GE_CHECK_NOTNULL(input_data);
size_t data_num = data_tensor->GetData().size() / sizeof(int32_t);
unique_ptr<int32_t[]> buf(new (std::nothrow) int32_t[data_num]());
if (buf == nullptr) {
GELOGW("new buf failed");
return INTERNAL_ERROR;
}
int32_t tmp_x = input_data[0];
int32_t tmp_y = 1;
for (size_t k = 1; k < data_num; ++k) {
tmp_y = input_data[k];
if (ge::CheckInt32MulOverflow(tmp_x, tmp_y) != SUCCESS) {
GELOGW("Product is overflow. multiplier 1: %d. multiplier 2: %d.", tmp_x, tmp_y);
return INTERNAL_ERROR;
}
tmp_x *= tmp_y;
}
buf[0] = tmp_x;
GE_IF_BOOL_EXEC(output_ptr->SetData(reinterpret_cast<uint8_t *>(buf.get()), sizeof(int32_t)) != GRAPH_SUCCESS,
GELOGW("set data failed");
return INTERNAL_ERROR);
output_ptr->MutableTensorDesc().SetDataType(data_type);
output_ptr->MutableTensorDesc().SetShape(GeShape());
}
return SUCCESS;
}
Status ReduceProdKernel::Compute(const ge::OpDescPtr op_desc_ptr, const std::vector<ge::ConstGeTensorPtr> &input,
std::vector<ge::GeTensorPtr> &v_output) {
GELOGI("ReduceProdKernel in.");
Status ret = ReduceProdCheck(op_desc_ptr, input);
if (ret != SUCCESS && ret != NOT_CHANGED) {
GELOGW("ReduceProdKernel input is invalid, failed to fold node.");
return NOT_CHANGED;
}
// Index 0 can always gets a GeTensorDesc object from any OpDescPtr.
auto output_tensor_desc = op_desc_ptr->GetOutputDesc(0);
GeTensorPtr output_ptr = MakeShared<GeTensor>(output_tensor_desc);
if (output_ptr == nullptr) {
GELOGW("make_shared ge::GeTensor failed, node name %s.", op_desc_ptr->GetName().c_str());
return NOT_CHANGED;
}
if (ret == NOT_CHANGED) {
// compute output tensor when no param axis
ret = ComputeNoAxis(op_desc_ptr, input, output_ptr);
if (ret != SUCCESS) {
return NOT_CHANGED;
}
} else if (input.at(kReduceProdAxisIndex)->GetData().size() == 0) {
// axis tensor value is [], means no process for input
output_ptr->MutableTensorDesc().SetShape(input.at(kReduceProdDataIndex)->GetTensorDesc().GetShape());
output_ptr->MutableTensorDesc().SetDataType(input.at(kReduceProdDataIndex)->GetTensorDesc().GetDataType());
if (output_ptr->SetData(input.at(kReduceProdDataIndex)->GetData()) != GRAPH_SUCCESS) {
GELOGW("Compute: SetData failed");
}
} else {
// calculate axis to reduce
ret = AxisCal(input);
if (ret != SUCCESS) {
return NOT_CHANGED;
}
// calculate and set shape
ShapeCal(op_desc_ptr, input, output_ptr);
// set data type
output_ptr->MutableTensorDesc().SetDataType(input.at(kReduceProdDataIndex)->GetTensorDesc().GetDataType());
// data size == 0 means input tensor has zero in shape, and tensor value is [].
if (input.at(kReduceProdDataIndex)->GetData().size() != 0) {
// calculate data and data type
ret = DataCal(input, output_ptr);
if (ret != SUCCESS) {
return NOT_CHANGED;
}
}
}
// print output tensor information, and will be deleted
GELOGD("ReduceProd op %s output tensor data size is %zu", op_desc_ptr->GetName().c_str(),
output_ptr->GetData().size());
vector<int64_t> data_dims = output_ptr->GetTensorDesc().GetShape().GetDims();
GELOGD("ReduceProd op %s output tensor dim size is %zu", op_desc_ptr->GetName().c_str(), data_dims.size());
v_output.emplace_back(output_ptr);
GELOGI("ReduceProdKernel success.");
return SUCCESS;
}
REGISTER_KERNEL(REDUCEPROD, ReduceProdKernel);
} // namespace ge