You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/graph/build/memory/block_mem_assigner.cc

1624 lines
62 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "graph/build/memory/block_mem_assigner.h"
#include <algorithm>
#include <sstream>
#include "external/ge/ge_api_types.h"
#include "framework/common/debug/ge_log.h"
#include "graph/anchor.h"
#include "graph/buffer.h"
#include "graph/ge_attr_value.h"
#include "graph/ge_context.h"
#include "graph/node.h"
#include "graph/utils/graph_utils.h"
#include "graph/utils/node_utils.h"
#include "graph/utils/op_desc_utils.h"
#include "graph/utils/tensor_utils.h"
#include "graph/debug/ge_attr_define.h"
#include "graph/common/local_context.h"
#include "graph/optimize/common/params.h"
#include "omg/omg_inner_types.h"
#include "runtime/mem.h"
using std::map;
using std::set;
using std::list;
using std::pair;
using std::string;
using std::stringstream;
using std::unordered_map;
using std::unordered_set;
using std::vector;
namespace {
const char *const kAttrNameWorkspaceReuseFlag = "workspace_reuse_flag";
const char *const kL2FusionDynamicConvergeOp = "l2fusion_dynamic_converge_op";
const char *const kOpNoReuseMem = "no_reuse_mem_flag";
const char *const OP_NO_REUSE_MEM = "OP_NO_REUSE_MEM";
const int kReuseMaxCount = 10;
const int kReuseMaxOpNum = 10;
const int kReuseMaxCharNum = 2000;
} // namespace
namespace ge {
void AlignMemOffset(size_t &mem_align_size) {
if (mem_align_size <= 0) {
return;
}
mem_align_size = (mem_align_size + MEM_ALIGN_SIZE - 1) / MEM_ALIGN_SIZE * MEM_ALIGN_SIZE;
}
void MemoryBlock::SetHeadOffset(size_t offset) {
head_offset_ = offset;
size_t child_offset = head_offset_;
for (auto block : child_blocks_) {
if (block != nullptr) {
block->SetHeadOffset(child_offset);
child_offset += block->Size();
}
}
}
void MemoryBlock::SetTailOffset(size_t offset) {
tail_offset_ = offset;
size_t child_offset = head_offset_;
for (auto block : child_blocks_) {
if (block != nullptr) {
child_offset += block->Size();
block->SetTailOffset(child_offset - 1);
}
}
}
void MemoryBlock::Resize() {
size_t child_block_size = 0;
for (auto block : child_blocks_) {
if (block != nullptr) {
block->Resize();
child_block_size += block->Size();
}
}
auto iter = std::max_element(real_size_list_.begin(), real_size_list_.end());
if (iter == real_size_list_.end()) {
GELOGW("real_size_list_ is empty");
return;
} else {
size_t block_size = (child_block_size > *iter) ? child_block_size : *iter;
if ((block_size > 0) && (block_size % MEM_ALIGN_SIZE != 0)) {
AlignMemOffset(block_size);
}
block_size_ = block_size;
if (last_continuous_block_) {
block_size_ += MEM_ALIGN_SIZE;
}
}
}
size_t MemoryBlock::AlignSize() const {
size_t align_block_size = 0;
auto iter = std::max_element(real_size_list_.begin(), real_size_list_.end());
if (iter == real_size_list_.end()) {
GELOGW("real_size_list_ is empty");
} else {
align_block_size = *iter;
if ((align_block_size > 0) && (align_block_size % MEM_ALIGN_SIZE != 0)) {
AlignMemOffset(align_block_size);
}
}
return align_block_size;
}
bool MemoryBlock::IsSameLabel(std::string &first_batch_label) {
if (node_type_index_list_.empty()) {
return false;
}
auto node_op_desc = node_type_index_list_[0].node->GetOpDesc();
if (node_op_desc == nullptr) {
return false;
}
// not all op has ATTR_NAME_BATCH_LABEL, no need check return value, only check out parameter
(void)ge::AttrUtils::GetStr(node_op_desc, ATTR_NAME_BATCH_LABEL, first_batch_label);
if (first_batch_label.empty()) {
return false;
}
bool all_same_label = true;
for (size_t index = 1; index < node_type_index_list_.size(); ++index) {
if (node_type_index_list_[index].node == nullptr) {
continue;
}
std::string batch_label;
auto index_op_desc = node_type_index_list_[index].node->GetOpDesc();
GE_IF_BOOL_EXEC(index_op_desc == nullptr, continue);
(void)ge::AttrUtils::GetStr(index_op_desc, ATTR_NAME_BATCH_LABEL, batch_label);
if (first_batch_label != batch_label) {
all_same_label = false;
break;
}
}
return all_same_label;
}
bool CanNotLifeReuse(MemoryBlock *block) {
if ((block == nullptr) || !block->reuse_mem_ || block->deleted_block_) {
return true;
}
return false;
}
void MemoryBlock::AddContinuousLifeReuseBlock(MemoryBlock *block, DependStreamLife &total_node_depend_stream_life) {
// continuous memory case:only real_size is maximum can be reused and only one continuous memory in one block
auto it_block = std::max_element(std::begin(block->NoAlignSizeList()), std::end(block->NoAlignSizeList()));
auto it_this = std::max_element(std::begin(NoAlignSizeList()), std::end(NoAlignSizeList()));
if (it_block != std::end(block->NoAlignSizeList()) && it_this != std::end(NoAlignSizeList())) {
if ((continuous_block_ && block->continuous_block_) ||
(continuous_block_ && (*it_this < *it_block)) || (block->continuous_block_ && (*it_this > *it_block))) {
GELOGD("Conflict current block size:%zu continuous:%d, reuse block max size:%zu continuous:%d",
*it_this, continuous_block_, *it_block, block->continuous_block_);
return;
}
}
MemoryBlock *parent = nullptr;
MemoryBlock *child = nullptr;
// merge small block to large block
if (block->GetDependLifeBegin(stream_id_, total_node_depend_stream_life) > GetLifeEnd()) {
if ((block->child_offset_ + AlignSize()) <= *it_block) {
parent = block;
child = this;
}
}
if ((parent != nullptr) && (child != nullptr) && child->child_blocks_.empty()) {
parent->child_blocks_.emplace_back(child);
parent->child_offset_ += child->AlignSize();
child->deleted_block_ = true;
GELOGI("Add continuous block[%p size:%zu, stream id:%ld life time[begin:%zu, end:%zu]] to"
" block[%p size:%zu, stream id:%ld, life time[begin:%zu, end:%zu]]", child, child->block_size_,
child->stream_id_, child->GetLifeBegin(), child->GetLifeEnd(), parent, parent->block_size_,
parent->stream_id_, parent->GetLifeBegin(), parent->GetLifeEnd());
}
}
void MemoryBlock::AddLifeReuseBlock(MemoryBlock *block, DependStreamLife &total_node_depend_stream_life) {
if (CanNotLifeReuse(this) || CanNotLifeReuse(block)) {
return;
}
if (block->continuous_block_) {
AddContinuousLifeReuseBlock(block, total_node_depend_stream_life);
return;
}
MemoryBlock *parent = nullptr;
MemoryBlock *child = nullptr;
// merge small block to large block
if (block->GetDependLifeBegin(stream_id_, total_node_depend_stream_life) > GetLifeEnd()) {
if ((child_offset_ + block->AlignSize()) <= AlignSize()) {
parent = this;
child = block;
} else if ((block->child_offset_ + AlignSize()) <= block->AlignSize()) {
parent = block;
child = this;
}
}
if ((parent != nullptr) && (child != nullptr) && child->child_blocks_.empty()) {
parent->child_blocks_.emplace_back(child);
parent->child_offset_ += child->AlignSize();
child->deleted_block_ = true;
GELOGI("Add block[%p size:%zu, stream id:%ld life time[begin:%zu, end:%zu]] to"
" block[%p size:%zu, stream id:%ld, life time[begin:%zu, end:%zu]]", child, child->block_size_,
child->stream_id_, child->GetLifeBegin(), child->GetLifeEnd(), parent, parent->block_size_,
parent->stream_id_, parent->GetLifeBegin(), parent->GetLifeEnd());
}
}
size_t MemoryBlock::GetLifeBegin() {
size_t life_time = 0;
if (!node_type_index_list_.empty()) {
if (node_type_index_list_.front().node != nullptr) {
auto node_op_desc = node_type_index_list_.front().node->GetOpDesc();
if (node_op_desc != nullptr) {
life_time = node_op_desc->GetId();
}
}
}
return life_time;
}
/// |-stream 1-| |-stream 2-|
/// |--block1--| |--block---|
/// |--block2--| |--block---|
/// |--block3--|\ |--block---|
/// |--block---| \ |--block---|
/// |--block---| \|--block---|
/// |--block---| |--block7--|
/// |--block---| |--block---|
/// block7's first node's input node's life begin > block2's life end, block7 can reuse block1~block2
size_t MemoryBlock::GetDependLifeBegin(int64_t stream_id, DependStreamLife &total_node_depend_stream_life) {
AddDependLifeBegin(total_node_depend_stream_life);
auto it = depend_stream_life_.find(stream_id);
if (it == depend_stream_life_.end()) {
return 0;
}
return it->second;
}
void AddDependLife(const ge::NodePtr &org_node, const ge::NodePtr &node, int64_t stream_id,
std::map<int64_t, size_t> &depend_stream_life, DependStreamLife &total_node_depend_stream_life) {
GE_CHECK_NOTNULL_EXEC(node, return);
auto node_desc = node->GetOpDesc();
GE_CHECK_NOTNULL_EXEC(node_desc, return);
auto node_id = node_desc->GetId();
auto stream_life = total_node_depend_stream_life.find(node_id);
if (stream_life != total_node_depend_stream_life.end()) {
for (auto &it : stream_life->second) {
if (depend_stream_life.find(it.first) == depend_stream_life.end()) {
depend_stream_life[it.first] = it.second;
}
}
return;
}
for (const auto &in_anchor : node->GetAllInAnchors()) {
GE_CHECK_NOTNULL_EXEC(in_anchor, continue);
for (auto peer_out_anchor : in_anchor->GetPeerAnchors()) {
GE_CHECK_NOTNULL_EXEC(peer_out_anchor, continue);
auto peer_node = peer_out_anchor->GetOwnerNode();
GE_CHECK_NOTNULL_EXEC(peer_node, continue);
auto peer_node_desc = peer_node->GetOpDesc();
GE_CHECK_NOTNULL_EXEC(peer_node_desc, continue);
auto peer_node_stream_id = peer_node_desc->GetStreamId();
if (peer_node_stream_id < 0) {
continue;
}
size_t peer_node_life_time = peer_node_desc->GetId();
auto it = depend_stream_life.find(peer_node_stream_id);
if (it == depend_stream_life.end() || peer_node_life_time > it->second) {
depend_stream_life[peer_node_stream_id] = peer_node_life_time;
if (peer_node_stream_id != stream_id) {
GELOGI("Node:%s stream id:%ld depend node:%s stream id:%ld index[%d] life time[%zu].",
org_node->GetName().c_str(), stream_id, peer_node_desc->GetName().c_str(),
peer_node_stream_id, peer_out_anchor->GetIdx(), peer_node_life_time);
}
AddDependLife(org_node, peer_node, stream_id, depend_stream_life, total_node_depend_stream_life);
}
}
}
// save on node to save next calculation
for (auto &it : depend_stream_life) {
if (total_node_depend_stream_life[node_id].find(it.first) == total_node_depend_stream_life[node_id].end()) {
total_node_depend_stream_life[node_id][it.first] = it.second;
}
}
}
void MemoryBlock::AddDependLifeBegin(DependStreamLife &total_node_depend_stream_life) {
if (!depend_stream_life_.empty()) {
return;
}
if (!node_type_index_list_.empty()) {
auto node = node_type_index_list_.front().node;
if (node != nullptr) {
AddDependLife(node, node, stream_id_, depend_stream_life_, total_node_depend_stream_life);
}
}
depend_stream_life_[stream_id_] = GetLifeBegin();
}
size_t MemoryBlock::GetLifeEnd() {
if (!node_type_index_list_.empty()) {
return node_type_index_list_.back().life_time_end;
}
return kMaxLifeTime;
}
void MemoryBlock::SetLifeTimeEnd(size_t time) {
if (!node_type_index_list_.empty()) {
node_type_index_list_.back().life_time_end = time;
}
}
void SetLastUsedInputMemAttr(NodePtr &node, int input_index) {
if (node == nullptr) {
return;
}
auto node_op_desc = node->GetOpDesc();
if (node_op_desc != nullptr) {
auto input_desc = node_op_desc->GetInputDesc(input_index);
if (!ge::AttrUtils::SetInt(input_desc, ATTR_NAME_IS_END_OF_INPUTMEM_LIFECYCLE, true)) {
GELOGW("Set %s input[%d] ATTR_NAME_IS_END_OF_INPUTMEM_LIFECYCLE to true failed.", node_op_desc->GetName().c_str(),
input_index);
return;
}
GELOGD("Set %s input[%d] ATTR_NAME_IS_END_OF_INPUTMEM_LIFECYCLE to true success.", node_op_desc->GetName().c_str(),
input_index);
if (node_op_desc->UpdateInputDesc(input_index, input_desc) != GRAPH_SUCCESS) {
GELOGW("Update %s input[%d] desc failed.", node_op_desc->GetName().c_str(), input_index);
}
}
}
Status GetNoAlignSize(const ge::OpDesc &desc, uint32_t index, size_t &size) {
// calculate tensor real size
auto output_op_desc = desc.GetOutputDescPtr(index);
if (output_op_desc == nullptr) {
GELOGI("GetNoAlignSize failed. OpName: %s, OpType: %s, index: %d",
desc.GetName().c_str(), desc.GetType().c_str(), index);
return FAILED;
}
int64_t tensor_size = 0;
GeShape shape = output_op_desc->GetShape();
Format format = output_op_desc->GetFormat();
DataType data_type = output_op_desc->GetDataType();
graphStatus graph_status = TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size);
if (graph_status != GRAPH_SUCCESS) {
GELOGE(graph_status, "CalcTensorMemSize failed!");
return FAILED;
}
size = static_cast<size_t>(tensor_size);
return SUCCESS;
}
string ToString(ge::NodeTypeIndex &x) {
stringstream ss;
ss << "[" << x.node->GetName() << "(" << x.node->GetType() << "), ";
if (x.mem_type == kOutput) {
ss << "Output, ";
} else {
ss << "Workspace, ";
}
ss << x.index << "]";
return ss.str();
}
string MemoryBlock::String() {
stringstream ss;
ss << "Block size: " << Size() << " from " << HeadOffset() << " to " << TailOffset() << " ";
ss << "real_size_list: " << ToString(real_size_list_) << " ";
ss << "ref_count: " << ref_count_ << " ";
ss << "members: ";
for (auto x : NodeTypeIndexList()) {
ss << "__node: " << ToString(x) << " ";
}
for (const auto& symbol : SymbolList()) {
ss << "__symbol: " << symbol << " ";
}
return ss.str();
}
BlockMemAssigner::BlockMemAssigner(ComputeGraphPtr compute_graph, const map<string, string> &anchor_to_symbol,
const map<string, list<NodeIndexIO>> &symbol_to_anchors)
: mem_offset_(0), compute_graph_(std::move(compute_graph)), symbol_to_anchors_(symbol_to_anchors),
anchor_to_symbol_(anchor_to_symbol), life_time_(0) {}
BlockMemAssigner::~BlockMemAssigner() {
GELOGD("blocks_store_ size : %lu", blocks_store_.size());
for (MemoryBlock *memory_block : blocks_store_) {
GE_DELETE_NEW_SINGLE(memory_block);
}
}
void BlockMemAssigner::GetOutAndWorkSpaceMem(vector<int64_t> &all_memory_size) {
vector<int64_t> temp;
for (const NodePtr &n : compute_graph_->GetAllNodes()) {
auto node_op_desc = n->GetOpDesc();
GE_IF_BOOL_EXEC(node_op_desc == nullptr, continue);
if (node_op_desc->GetType() == ATOMICADDRCLEAN) {
atomic_addr_clean_id_ = node_op_desc->GetId();
}
for (auto &out_anchor : n->GetAllOutDataAnchors()) {
GeTensorDesc output_desc = node_op_desc->GetOutputDesc(out_anchor->GetIdx());
bool reuse_input = false;
GE_IF_BOOL_EXEC(ge::TensorUtils::GetReuseInput(output_desc, reuse_input) != SUCCESS,
GELOGI("Get reuse_input failed"));
if (!reuse_input) {
int64_t size = 0;
GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(output_desc, size) != SUCCESS, GELOGI("Get size failed"));
if (anchor_to_symbol_.empty()) {
all_memory_size.emplace_back(size);
} else {
auto iter1 = anchor_to_symbol_.find(NodeIndexIO(n, out_anchor->GetIdx(), kOut).ToString());
if (iter1 == anchor_to_symbol_.end()) {
continue;
}
const std::string &symbol = iter1->second;
auto iter2 = symbol_size_.find(symbol);
if (iter2 == symbol_size_.end()) {
symbol_size_[symbol] = size;
} else if (size > static_cast<int64_t>(iter2->second)) {
iter2->second = size;
}
}
}
}
temp.clear();
GetNodeWorkSpaceSize(n, temp);
all_memory_size.insert(all_memory_size.end(), temp.begin(), temp.end());
}
GELOGI("The last atomic_addr_clean node id: %ld", atomic_addr_clean_id_);
for (const auto &pair : symbol_size_) {
all_memory_size.emplace_back(pair.second);
}
sort(all_memory_size.begin(), all_memory_size.end());
GELOGI("All memory size: %s", ToString(all_memory_size).c_str());
for (auto iter = all_memory_size.begin(); iter != all_memory_size.end();) {
if (*iter == 0) {
iter = all_memory_size.erase(iter);
} else {
++iter;
}
}
InitReuseFlag();
PrintSymbolMap();
}
///
/// @ingroup domi
/// @brief decide memory size based on actual input memory size
/// @param [in] size actual memory size in need
/// @param [in] ranges memory size provided
/// @return size_t memory size to apply
///
size_t GetBlockSize(size_t size, const vector<int64_t> &ranges) {
for (int64_t x : ranges) {
auto x_temp = static_cast<size_t>(x);
if (size <= x_temp) {
return x_temp;
}
}
GELOGW("Memory needed size:%zu is beyond the biggest block in memory ranges.", size);
return size;
}
bool IsDirectOutputNode(const NodePtr &node, int idx) {
if ((node != nullptr) && (node->GetOpDesc() != nullptr) && (node->GetOpDesc()->GetType() == NETOUTPUT)) {
GELOGI("This is netoutput node, the input node mem can not be reused");
return true;
}
return false;
}
void AddReusableBlockCount(const MemoryBlock &mem_block, map<string, uint64_t> &reusable_block_counts) {
string key = std::to_string(mem_block.Size());
key += "_" + std::to_string(mem_block.stream_id_);
auto it = reusable_block_counts.find(key);
if (it != reusable_block_counts.end()) {
it->second++;
} else {
reusable_block_counts[key] = 1;
}
}
void ReduceReusableBlockCount(const MemoryBlock &mem_block, map<string, uint64_t> &reusable_block_counts) {
string key = std::to_string(mem_block.Size());
key += "_" + std::to_string(mem_block.stream_id_);
auto it = reusable_block_counts.find(key);
if (it != reusable_block_counts.end()) {
if (it->second > 0) {
it->second--;
}
}
}
bool CanReuseBySize(const map<string, uint64_t> &reusable_block_counts, const MemoryBlock &reusable_block,
size_t block_size, size_t real_size, bool continuous) {
bool can_reuse = false;
if (reusable_block.Size() == block_size) {
can_reuse = true;
} else {
string key = std::to_string(reusable_block.Size());
key += "_" + std::to_string(reusable_block.stream_id_);
auto it = reusable_block_counts.find(key);
GE_IF_BOOL_EXEC((it != reusable_block_counts.end() && (it->second > kReuseMaxCount)) &&
(reusable_block.Size() > block_size),
can_reuse = true;
GELOGD("Less size mem reuse, reuse block size:%zu, current block size:%zu",
reusable_block.Size(), block_size););
}
return can_reuse;
}
bool BlockMemAssigner::IsOutNodeSetContinuousInput(const NodePtr &n, uint32_t out_index, std::string &peer_name,
uint32_t &peer_input_index, bool &no_need_assign_memory) {
if (n == nullptr || n->GetAllOutDataAnchors().size() <= 0) {
return false;
}
if (static_cast<size_t>(out_index) < n->GetAllOutDataAnchors().size()) {
auto out_anchor = n->GetOutDataAnchor(out_index);
GE_IF_BOOL_EXEC(out_anchor == nullptr,
GELOGE(FAILED, "Node[%s] output[%u] anchor is null.", n->GetName().c_str(), out_index);
return false;);
for (auto const &peer_in_anchor : out_anchor->GetPeerInDataAnchors()) {
GE_IF_BOOL_EXEC(peer_in_anchor == nullptr,
GELOGE(FAILED, "Node[%s] output[%u] peer_in_anchor 0 is null.", n->GetName().c_str(), out_index);
return false;);
auto peer_node = peer_in_anchor->GetOwnerNode();
GE_IF_BOOL_EXEC(peer_node == nullptr,
GELOGE(FAILED, "Node[%s] output[%u] node is null.", n->GetName().c_str(), out_index);
return false;);
// Get the continuous input type of the node, default is false
bool is_input_continuous = false;
auto peer_in_node_desc = peer_node->GetOpDesc();
GE_IF_BOOL_EXEC(peer_in_node_desc == nullptr,
GELOGE(FAILED, "Node[%s] output[%u] nodedesc is null.", n->GetName().c_str(), out_index);
return false;);
// If GetBool fail, is_input_continuous is false.
(void)ge::AttrUtils::GetBool(peer_in_node_desc, ATTR_NAME_CONTINUOUS_INPUT, is_input_continuous);
GE_IF_BOOL_EXEC(is_input_continuous && CheckIsZeroMemNodeType(peer_node->GetType()),
GELOGI("Node[%s] output[%u] no_need_assign_memory.", n->GetName().c_str(), out_index);
no_need_assign_memory = true;
return false;);
if (is_input_continuous) {
if (n->GetOwnerComputeGraph() != nullptr) {
string graph_name = n->GetOwnerComputeGraph()->GetName();
GELOGI("%s name[%s] output[%u] node[%s] set input[%d] continuous, input size[%u].", graph_name.c_str(),
n->GetName().c_str(), out_index, peer_in_node_desc->GetName().c_str(), peer_in_anchor->GetIdx(),
peer_node->GetAllInDataAnchorsSize());
// Only set attr one times.
if (node_continuous_input_blocks_[peer_in_node_desc->GetName()].size() == 0) {
(void)ge::AttrUtils::SetBool(peer_in_node_desc, ATTR_NAME_CONTINUOUS_INPUT_ALLOC, true);
node_continuous_input_counts_[peer_in_node_desc->GetName()] = peer_node->GetAllInDataAnchorsSize();
}
peer_input_index = peer_in_anchor->GetIdx();
peer_name = peer_in_node_desc->GetName();
return true;
}
}
}
}
return false;
}
///
/// @ingroup GE
/// @brief Check pre_reuse flag & post_reuse glag for each symbol
/// @return void
///
void BlockMemAssigner::InitReuseFlag() {
static const std::set<std::string> kPreReuseTypes = { ge::DATA_TYPE, ge::AIPP_DATA_TYPE, ge::ANN_DATA_TYPE,
ge::NETOUTPUT, ge::PROPOSAL, ge::ZEROSLIKE,
ge::CONSTANT, ge::CONSTANTOP };
static const std::set<std::string> kPostReuseTypes = { ge::DATA_TYPE, ge::AIPP_DATA_TYPE, ge::ENTER, ge::REFENTER,
ge::NEXTITERATION, ge::REFNEXTITERATION };
for (const auto &pair : symbol_to_anchors_) {
std::string symbol = pair.first;
bool pre_reuse_flag = true;
bool post_reuse_flag = true;
for (const auto &node_index_io : pair.second) {
if (node_index_io.io_type_ == kIn) {
continue;
}
OutDataAnchorPtr out_anchor = node_index_io.node_->GetOutDataAnchor(node_index_io.index_);
if (out_anchor == nullptr) {
continue;
}
bool out_flg = false;
if (node_index_io.node_->GetOutDataNodes().empty()) {
out_flg = true;
}
for (const auto &in_anchor : out_anchor->GetPeerInDataAnchors()) {
if (IsDirectOutputNode(in_anchor->GetOwnerNode(), in_anchor->GetIdx())) {
out_flg = true;
break;
}
}
const std::string &type = out_anchor->GetOwnerNode()->GetType();
pre_reuse_flag = pre_reuse_flag && !out_flg && (kPreReuseTypes.count(type) == 0);
post_reuse_flag = post_reuse_flag && (kPostReuseTypes.count(type) == 0);
if (!pre_reuse_flag && !post_reuse_flag) {
break;
}
}
pre_reuse_flag_[symbol] = pre_reuse_flag;
post_reuse_flag_[symbol] = post_reuse_flag;
}
}
///
/// @ingroup GE
/// @brief get pre_reuse flag
/// @param [in] node
/// @param [in] out_index
/// @return bool
///
bool BlockMemAssigner::IsPreReuse(const NodePtr &node, uint32_t out_index) const {
OutDataAnchorPtr out_data_anchor = nullptr;
if (static_cast<size_t>(out_index) < node->GetAllOutDataAnchors().size()) {
out_data_anchor = node->GetOutDataAnchor(out_index);
}
if (out_data_anchor == nullptr) {
return false;
}
NodeIndexIO cur_node_index_io(out_data_anchor->GetOwnerNode(), out_data_anchor->GetIdx(), kOut);
auto iter1 = anchor_to_symbol_.find(cur_node_index_io.ToString());
if (iter1 == anchor_to_symbol_.end()) {
return false;
}
const std::string &symbol = iter1->second;
auto iter2 = pre_reuse_flag_.find(symbol);
if (iter2 == pre_reuse_flag_.end()) {
return false;
}
return iter2->second;
}
///
/// @ingroup GE
/// @brief get post_reuse flag
/// @param [in] mem_block
/// @return bool
///
bool BlockMemAssigner::IsPostReuse(const MemoryBlock *mem_block) const {
if (mem_block == nullptr) {
return false;
}
for (const auto &symbol : mem_block->SymbolList()) {
auto iter = post_reuse_flag_.find(symbol);
if (iter == post_reuse_flag_.end()) {
continue;
}
if (!iter->second) {
return false;
}
}
return true;
}
///
/// @ingroup GE
/// @brief check if symbol of cur node_index_io has block
/// @param [in] node_index_io
/// @param [out] symbol
/// @return bool
///
bool BlockMemAssigner::IsSymbolExist(const NodeIndexIO &node_index_io, string &symbol) {
auto iter = anchor_to_symbol_.find(node_index_io.ToString());
if (iter == anchor_to_symbol_.end()) {
return false;
}
symbol = iter->second;
return symbol_blocks_.find(iter->second) != symbol_blocks_.end();
}
///
/// @ingroup GE
/// @brief Print symbol
/// @return void
///
void BlockMemAssigner::PrintSymbolMap() {
for (const auto &pair : symbol_to_anchors_) {
GELOGD("symbol=%s, max_size=%zu, pre_reuse=%s, post_reuse=%s", pair.first.c_str(), symbol_size_[pair.first],
pre_reuse_flag_[pair.first] ? "true" : "false", post_reuse_flag_[pair.first] ? "true" : "false");
for (const auto &node_index_io : pair.second) {
GELOGD("anchor:%s", node_index_io.ToString().c_str());
}
}
}
bool BlockMemAssigner::IsContinuousOutput(const NodePtr &n) {
if (n == nullptr) {
GELOGE(FAILED, "Node is null.");
return false;
}
// Get the continuous output type of the node, default is false
bool is_output_continuous = false;
auto node_desc = n->GetOpDesc();
if (node_desc == nullptr) {
GELOGE(FAILED, "Node[%s] nodedesc is null.", n->GetName().c_str());
return false;
}
// If GetBool fail, is_output_continuous is false.
(void)ge::AttrUtils::GetBool(node_desc, ATTR_NAME_CONTINUOUS_OUTPUT, is_output_continuous);
if (is_output_continuous) {
if (n->GetOwnerComputeGraph() != nullptr) {
string graph_name = n->GetOwnerComputeGraph()->GetName();
GELOGI("%s name[%s] set continuous, output size[%u].", graph_name.c_str(),
n->GetName().c_str(), n->GetAllOutDataAnchorsSize());
return true;
}
}
return false;
}
bool BlockMemAssigner::IsZeroCopyBlock(const NodePtr &node, bool continuous) {
if (NodeUtils::IsDynamicShape(node)) {
return ((node->GetType() == DATA_TYPE) && !continuous) || (node->GetType() == NETOUTPUT);
}
if ((node->GetType() == DATA_TYPE) && !continuous) {
return !node->GetOpDesc()->HasAttr(ATTR_NAME_PARENT_NODE_INDEX);
}
if (node->GetType() == NETOUTPUT) {
const auto &owner = node->GetOwnerComputeGraph();
return owner->GetParentGraph() == nullptr;
}
return false;
}
MemoryBlock *BlockMemAssigner::ApplyMemory(size_t block_size, size_t real_size, size_t no_align_size,
MemoryType mem_type, const NodePtr &n, uint32_t out_index,
const vector<bool> &workspace_reuse_flag, const bool is_op_reuse_mem,
const bool continuous) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(n == nullptr, return nullptr, "Input parameter n is null.");
auto node_op_desc = n->GetOpDesc();
GE_IF_BOOL_EXEC(node_op_desc == nullptr, return nullptr);
bool is_reuse_memory = false;
string ge_disable_reuse_mem_env = "0";
(void)ge::GetContext().GetOption(OPTION_EXEC_DISABLE_REUSED_MEMORY, ge_disable_reuse_mem_env);
if (ge_disable_reuse_mem_env != "1") {
bool reuse_mem_flag = !((workspace_reuse_flag.size() > out_index) && !workspace_reuse_flag[out_index]);
is_reuse_memory = !node_op_desc->HasAttr(kL2FusionDynamicConvergeOp) &&
!node_op_desc->HasAttr(kOpNoReuseMem) &&
reuse_mem_flag &&
is_op_reuse_mem &&
(IsPreReuse(n, out_index));
auto stream_id = node_op_desc->GetStreamId();
if (is_reuse_memory && !continuous) {
for (auto it = reusable_blocks_[stream_id].begin(); it != reusable_blocks_[stream_id].end(); ++it) {
MemoryBlock *reusable_block = *it;
if (!IsPostReuse(reusable_block)) {
reusable_block->reuse_mem_ = false;
GELOGI("Unreusable block.");
continue;
}
// A node can reuse blocks of the same stream and preorder streams
if (CanReuseBySize(reusable_block_counts_, *reusable_block, block_size, real_size, continuous)) {
reusable_block->AddNodeTypeIndex({n, mem_type, out_index, false}, real_size, no_align_size);
if (mem_type == kOutput) {
auto iter = anchor_to_symbol_.find(NodeIndexIO(n, out_index, kOut).ToString());
if (iter != anchor_to_symbol_.end()) {
reusable_block->AddSymbol(iter->second);
}
}
reusable_block->continuous_block_ = continuous;
reusable_block->ref_count_++;
ReduceReusableBlockCount(*reusable_block, reusable_block_counts_);
reusable_blocks_[stream_id].erase(it);
return reusable_block;
}
}
}
}
auto block = new (std::nothrow) MemoryBlock(block_size, node_op_desc->GetStreamId(), is_reuse_memory);
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(block == nullptr, return nullptr, "new an object failed.");
// Data and netoutput need zero copy block
block->is_zero_copy_ = IsZeroCopyBlock(n, continuous);
block->Init(real_size, mem_type, n, out_index, no_align_size);
block->stream_id_ = node_op_desc->GetStreamId();
block->ref_count_++;
block->continuous_block_ = continuous;
if (mem_type == kOutput) {
auto iter = anchor_to_symbol_.find(NodeIndexIO(n, out_index, kOut).ToString());
if (iter != anchor_to_symbol_.end()) {
block->AddSymbol(iter->second);
}
}
memory_blocks_.emplace_back(block);
// cause memory_blocks_ may reduce when swap after,
// create blocks_store_ to assure blocks deleted finally
blocks_store_.emplace_back(block);
return block;
}
MemoryBlock *BlockMemAssigner::ApplyContinuousMemory(const NodePtr &n, const vector<int64_t> &ranges,
const bool is_op_reuse_mem) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(n == nullptr, return nullptr, "input node is null.");
auto node_op_desc = n->GetOpDesc();
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(node_op_desc == nullptr, return nullptr, "node_op_desc is null.");
MemoryBlock *block = nullptr;
int64_t total_size = 0;
for (uint32_t index = 0; index < static_cast<uint32_t>(node_op_desc->GetOutputsSize()); index++) {
auto output_op_desc = node_op_desc->GetOutputDescPtr(index);
if (output_op_desc == nullptr) {
return nullptr;
}
int64_t size = 0;
if (ge::TensorUtils::GetSize(*output_op_desc, size) != SUCCESS) {
GELOGI("Get size failed");
return nullptr;
}
size_t align_size = static_cast<size_t>(size);
AlignMemOffset(align_size);
total_size += align_size;
// only apply total size in first block
if (index != 0) {
zero_memory_list_.emplace_back(n, kOutput, index);
}
}
auto block_size = GetBlockSize(total_size, ranges);
GELOGI("Node[%s] continuous out memory size[%ld] block size[%zu]", node_op_desc->GetName().c_str(),
total_size, block_size);
vector<bool> workspace_reuse_flag;
block = ApplyMemory(block_size, total_size, total_size, kOutput, n, 0, workspace_reuse_flag, is_op_reuse_mem, true);
if (block != nullptr) {
// hccl task need align header and tail
block->first_continuous_block_ = true;
block->last_continuous_block_ = true;
}
return block;
}
MemoryBlock *BlockMemAssigner::ApplyOutMemory(const NodePtr &n, uint32_t index, const vector<int64_t> &ranges,
const bool is_op_reuse_mem, const bool continuous) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(n == nullptr, return nullptr, "input node is null.");
auto node_op_desc = n->GetOpDesc();
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(node_op_desc == nullptr, return nullptr, "node_op_desc is null.");
MemoryBlock *block = nullptr;
NodeIndexIO node_index_io(n, index, kOut);
int64_t size = 0;
auto output_op_desc = node_op_desc->GetOutputDescPtr(index);
if (output_op_desc != nullptr) {
GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(*output_op_desc, size) != SUCCESS, GELOGI("Get size failed"));
}
size_t no_align_size = 0;
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(GetNoAlignSize(*node_op_desc, index, no_align_size) != SUCCESS,
return nullptr, "Get no align size failed");
std::string symbol;
if (IsSymbolExist(node_index_io, symbol)) {
block = symbol_blocks_[symbol];
block->AddNodeTypeIndex({n, kOutput, index, true}, size, no_align_size);
block->ref_count_++;
} else {
int64_t max_size = size;
auto iter1 = anchor_to_symbol_.find(node_index_io.ToString());
if (iter1 != anchor_to_symbol_.end()) {
auto iter2 = symbol_size_.find(iter1->second);
if (iter2 != symbol_size_.end()) {
max_size = iter2->second;
}
}
auto block_size = GetBlockSize(max_size, ranges);
vector<bool> workspace_reuse_flag;
block = ApplyMemory(block_size, size, no_align_size, kOutput, n, index,
workspace_reuse_flag, is_op_reuse_mem, continuous);
}
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(block == nullptr, return nullptr, "Block is nullptr.");
int out_count_reuse_input = block->ref_count_;
int out_count = 0;
GE_IF_BOOL_EXEC(index >= n->GetAllOutDataAnchors().size(), GELOGE(FAILED, "index is out of range."); return nullptr);
auto out_data_anchor = n->GetOutDataAnchor(index);
GE_IF_BOOL_EXEC(out_data_anchor == nullptr, GELOGE(FAILED, "Out data anchor is nullptr."); return nullptr);
for (const auto &in_anchor : out_data_anchor->GetPeerInDataAnchors()) {
auto owner_node = in_anchor->GetOwnerNode();
auto op_desc = owner_node->GetOpDesc();
GE_IF_BOOL_EXEC(op_desc == nullptr, continue);
Params *instance = Params::Instance();
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(instance == nullptr, return nullptr, "Params instance is nullptr.");
if (!((instance->GetTarget() == TARGET_TYPE_TINY) && (op_desc->GetType() == NETOUTPUT))) {
out_count++;
}
}
bool reuse_input = false;
for (const auto &in_anchor : out_data_anchor->GetPeerInDataAnchors()) {
auto owner_node = in_anchor->GetOwnerNode();
GE_IF_BOOL_EXEC(owner_node == nullptr, continue);
auto op_desc = owner_node->GetOpDesc();
GE_IF_BOOL_EXEC(op_desc == nullptr, continue);
for (uint32_t i = 0; i < static_cast<uint32_t>(op_desc->GetOutputsSize()); i++) {
bool dst_reuse_input = false;
uint32_t dst_reuse_input_index = 0;
auto owner_node_op_desc = op_desc->GetOutputDescPtr(i);
GE_IF_BOOL_EXEC(owner_node_op_desc == nullptr, continue);
GE_IF_BOOL_EXEC(ge::TensorUtils::GetReuseInput(*owner_node_op_desc, dst_reuse_input) != SUCCESS,
GELOGI("Get dst_reuse_input failed"));
GE_IF_BOOL_EXEC(ge::TensorUtils::GetReuseInputIndex(*owner_node_op_desc, dst_reuse_input_index) != SUCCESS,
GELOGI("Get dst_reuse_input_index failed"));
if (dst_reuse_input && (dst_reuse_input_index == static_cast<uint32_t>(in_anchor->GetIdx()))) {
block->AddNodeTypeIndex({owner_node, kOutput, i, true}, block->Size(), block->Size());
out_count_reuse_input += 1;
reuse_input = true;
}
}
}
block->ref_count_ = reuse_input ? out_count_reuse_input + out_count - 1 : out_count;
return block;
}
bool IsOutputBlock(const ge::InDataAnchorPtr &in_data_anchor) {
auto peer_out_anchor = in_data_anchor->GetPeerOutAnchor();
GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, GELOGE(FAILED, "Peer out anchor is nullptr."); return false);
auto src = peer_out_anchor->GetOwnerNode();
int32_t index = peer_out_anchor->GetIdx();
auto iter = GetLocalOmgContext().out_nodes_map.find(src->GetName());
if (iter != GetLocalOmgContext().out_nodes_map.end()) {
for (auto id : iter->second) {
if (index == id) {
return true;
}
}
}
return false;
}
// atomic out memory will be reassigned
bool IsAtomicOutputMemory(const ge::NodePtr &node, uint32_t output_index, bool is_atomic,
bool out_node_set_continuous_input) {
auto op_desc = node->GetOpDesc();
if (op_desc == nullptr) {
return false;
}
vector<int64_t> atomic_output_index;
// If GetListInt fail, atomic_output_index is empty.
(void)ge::AttrUtils::GetListInt(op_desc, ATOMIC_ATTR_OUTPUT_INDEX, atomic_output_index);
if (!out_node_set_continuous_input && is_atomic) {
for (auto &index : atomic_output_index) {
if (static_cast<uint32_t>(index) == output_index) {
if (node->GetOwnerComputeGraph() != nullptr) {
string graph_name = node->GetOwnerComputeGraph()->GetName();
GELOGD("[IMAS]Atomic no assign %s name[%s] output[%d] streamid[%ld].", graph_name.c_str(),
op_desc->GetName().c_str(), index, op_desc->GetStreamId());
}
return true;
}
}
}
return false;
}
bool IsKnownSubgraphData(const NodePtr &node) {
if (NodeUtils::IsDynamicShape(node)) {
return false;
}
return node->GetOpDesc()->HasAttr(ATTR_NAME_PARENT_NODE_INDEX);
}
void BlockMemAssigner::ReleaseMemory(MemoryBlock *to_release, vector<MemoryBlock *> &reusable_memory) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(to_release == nullptr, return, "Input parameter to_release is null.");
GE_CHK_TRUE_EXEC_INFO(to_release->ref_count_ <= 0, return, "Release memory");
GE_CHK_TRUE_EXEC_INFO(!to_release->reuse_mem_, return, "doesn't reuse memory");
--to_release->ref_count_;
if (to_release->ref_count_ == 0) {
to_release->SetLifeTimeEnd(life_time_);
reusable_memory.emplace_back(to_release);
AddReusableBlockCount(*to_release, reusable_block_counts_);
}
}
void BlockMemAssigner::ReleaseMemorys(const vector<MemoryBlock *> &to_releases,
vector<MemoryBlock *> &reusable_memory) {
for (auto mem_block : to_releases) {
ReleaseMemory(mem_block, reusable_memory);
}
}
void BlockMemAssigner::ReleaseInputNodeOutMemory(const unordered_map<string, vector<MemoryBlock *>> &node_out_blocks,
vector<MemoryBlock *> &reusable_memory, NodePtr &node) {
for (const auto &in_anchor : node->GetAllInDataAnchors()) {
if ((in_anchor->GetPeerOutAnchor() == nullptr) ||
(in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetOpDesc() == nullptr) || (node->GetOpDesc() == nullptr)) {
return;
}
GE_IF_BOOL_EXEC(IsOutputBlock(in_anchor), continue);
auto node_name = in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetName();
GE_IF_BOOL_EXEC((in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetType() == CONSTANT) ||
(in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetType() == FASTRCNNPREDICTIONS) ||
(in_anchor->GetPeerOutAnchor()->GetOwnerNode()->GetType() == CONSTANTOP),
continue);
auto it = node_out_blocks.find(node_name);
if (it == node_out_blocks.end()) {
continue;
}
for (auto block : it->second) {
const vector<NodeTypeIndex> &node_type_indexs = block->NodeTypeIndexList();
if (node_type_indexs.empty()) {
continue;
}
GELOGD("node_type_indexs: %d, %s", node_type_indexs.back().index,
node_type_indexs.back().node->GetName().c_str());
if ((node_type_indexs.back().node == in_anchor->GetPeerOutAnchor()->GetOwnerNode()) &&
(node_type_indexs.back().index == static_cast<uint32_t>(in_anchor->GetPeerOutAnchor()->GetIdx())) &&
(node->GetOpDesc()->GetStreamId() == block->stream_id_)) {
ReleaseMemory(block, reusable_memory);
if (block->ref_count_ == 0) {
SetLastUsedInputMemAttr(node, in_anchor->GetIdx());
}
}
}
}
}
void SplitStringByComma(const string &str, vector<string> &sub_str_vec) {
std::string tmp_string = str + ",";
std::string::size_type start_pos = 0;
std::string::size_type cur_pos = tmp_string.find(',', 0);
while (cur_pos != std::string::npos) {
std::string sub_str = tmp_string.substr(start_pos, cur_pos - start_pos);
if (!sub_str.empty()) {
vector<string>::iterator ret = std::find(sub_str_vec.begin(), sub_str_vec.end(), sub_str);
if (ret == sub_str_vec.end()) {
sub_str_vec.push_back(sub_str);
}
}
start_pos = cur_pos + 1;
cur_pos = tmp_string.find(',', start_pos);
}
}
void CheckAndGetOpReuseEnv(const string &env, vector<string> &env_vec, bool &op_reuse_env_valid) {
string env_str;
env_str = string(env);
if (env_str.size() > kReuseMaxCharNum) {
GELOGE(FAILED, "The OP_NO_REUSE_MEM has more than %d characters.", kReuseMaxCharNum);
return;
}
SplitStringByComma(env_str, env_vec);
if (env_vec.size() > kReuseMaxOpNum) {
GELOGE(FAILED, "The OP_NO_REUSE_MEM has more than %d nodes.", kReuseMaxOpNum);
return;
}
op_reuse_env_valid = true;
return;
}
Status BlockMemAssigner::AssignOutputMemoryWithReuse(const NodePtr &node, vector<int64_t> &ranges) {
auto op_desc = node->GetOpDesc();
int64_t stream_id = op_desc->GetStreamId();
vector<int64_t> memorys_type;
bool has_mem_type_attr = ge::AttrUtils::GetListInt(op_desc, ATTR_NAME_OUTPUT_MEM_TYPE_LIST, memorys_type);
GELOGI("Assign memory node[%s], output size[%d], output memory type size[%d]", op_desc->GetName().c_str(),
op_desc->GetOutputsSize(), memorys_type.size());
if (has_mem_type_attr && (memorys_type.size() != op_desc->GetOutputsSize())) {
GELOGE(INTERNAL_ERROR, "fusion: node[%s], output memory size err[outputsize:%zu, memorysize:%zu]",
op_desc->GetName().c_str(), op_desc->GetOutputsSize(), memorys_type.size());
return INTERNAL_ERROR;
}
is_op_reuse_mem_ = true;
if (op_reuse_env_valid_ == true) {
vector<string>::iterator it_name =
std::find(op_no_reuse_mem_vec_.begin(), op_no_reuse_mem_vec_.end(), op_desc->GetName());
vector<string>::iterator it_type =
std::find(op_no_reuse_mem_vec_.begin(), op_no_reuse_mem_vec_.end(), op_desc->GetType());
GE_IF_BOOL_EXEC(it_name != op_no_reuse_mem_vec_.end() || it_type != op_no_reuse_mem_vec_.end(),
is_op_reuse_mem_ = false;);
}
bool is_atomic = false;
// If GetBool fail, is_atomic is false.
(void)ge::AttrUtils::GetBool(op_desc, ATOMIC_ATTR_IS_ATOMIC_NODE, is_atomic);
// Allocate memory for the current node and release node memory of the same size in the workspace
GE_IF_BOOL_EXEC(ge_disable_reuse_mem_env_ != "1",
ReleaseMemorys(stream_workspace_blocks_[stream_id], reusable_blocks_[stream_id]));
if (IsContinuousOutput(node)) {
(void)ApplyContinuousMemory(node, ranges, is_op_reuse_mem_);
return SUCCESS;
}
for (uint32_t i = 0; i < static_cast<uint32_t>(op_desc->GetOutputsSize()); i++) {
int64_t size = 0;
auto output_op_desc = op_desc->GetOutputDescPtr(i);
if (output_op_desc != nullptr) {
GE_IF_BOOL_EXEC(ge::TensorUtils::GetSize(*output_op_desc, size) != SUCCESS, GELOGI("Get size failed"));
}
// fusion: other type's size not means malloc HBM memory
bool l1_flag = has_mem_type_attr && memorys_type[i] == RT_MEMORY_L1;
if (l1_flag) {
GELOGI("fusion: node[%s], output[%s], output memory type [%d]",
op_desc->GetName().c_str(), op_desc->GetOutputNameByIndex(i).c_str(), memorys_type[i]);
size = 0;
}
std::string peer_name;
uint32_t peer_input_index = 0;
bool out_node_set_continuous_input = false;
bool no_need_assign_memory = ((size == 0) || CheckIsZeroMemNodeType(node->GetType()));
if (!no_need_assign_memory) {
out_node_set_continuous_input =
IsOutNodeSetContinuousInput(node, i, peer_name, peer_input_index, no_need_assign_memory);
GE_IF_BOOL_EXEC(!no_need_assign_memory,
no_need_assign_memory = IsAtomicOutputMemory(node, i, is_atomic, out_node_set_continuous_input););
}
no_need_assign_memory = (no_need_assign_memory || IsKnownSubgraphData(node));
if (no_need_assign_memory) {
zero_memory_list_.emplace_back(node, kOutput, i, false);
continue;
}
// atomic can't be reused
bool need_change = is_op_reuse_mem_ && out_node_set_continuous_input && is_atomic;
if (need_change) {
is_op_reuse_mem_ = false;
}
MemoryBlock *mem_block = ApplyOutMemory(node, i, ranges, is_op_reuse_mem_, out_node_set_continuous_input);
if (mem_block != nullptr) {
node_out_blocks_[node->GetName()].emplace_back(mem_block);
if (out_node_set_continuous_input) {
node_continuous_input_blocks_[peer_name][peer_input_index] = mem_block;
}
NodeIndexIO node_index_io(node, i, kOut);
auto iter = anchor_to_symbol_.find(node_index_io.ToString());
if (iter == anchor_to_symbol_.end()) {
continue;
}
symbol_blocks_[iter->second] = mem_block;
}
}
return SUCCESS;
}
///
/// @ingroup domi
/// @brief traverse all nodes outputs and workspace in need, apply memory block considering memory reuse
/// @param [in/out] ranges memory size provided
/// @return Status result
///
void BlockMemAssigner::AssignMemoryWithReuse(vector<int64_t> &ranges) {
(void)ge::GetContext().GetOption(OPTION_EXEC_DISABLE_REUSED_MEMORY, ge_disable_reuse_mem_env_);
GEEVENT("Reuse memory %s", ge_disable_reuse_mem_env_ == "1" ? "close" : "open");
string op_no_reuse_mem_str;
const char *op_no_reuse_mem = std::getenv(OP_NO_REUSE_MEM);
GE_IF_BOOL_EXEC(op_no_reuse_mem != nullptr, op_no_reuse_mem_str = string(op_no_reuse_mem);
CheckAndGetOpReuseEnv(op_no_reuse_mem_str, op_no_reuse_mem_vec_, op_reuse_env_valid_););
for (NodePtr &n : compute_graph_->GetAllNodes()) {
auto node_op_desc = n->GetOpDesc();
GE_IF_BOOL_EXEC(node_op_desc == nullptr, continue);
life_time_ = node_op_desc->GetId();
int64_t stream_id = node_op_desc->GetStreamId();
if (AssignOutputMemoryWithReuse(n, ranges) != SUCCESS) {
return;
}
stream_workspace_blocks_[stream_id].clear();
vector<int64_t> temp;
GetNodeWorkSpaceSize(n, temp);
vector<int64_t> workspace_bytes;
vector<int64_t> workspace_memory_type;
bool has_workspace_mem_type_attr =
ge::AttrUtils::GetListInt(node_op_desc, TVM_ATTR_NAME_WORKSPACE_TYPE, workspace_memory_type);
vector<bool> workspace_reuse_flag;
GE_IF_BOOL_EXEC(!ge::AttrUtils::GetListBool(node_op_desc, kAttrNameWorkspaceReuseFlag, workspace_reuse_flag),
GELOGD("OP %s get workspace_reuse_flag attr failed", node_op_desc->GetName().c_str()));
GELOGI("Assign memory node[%s], size [temp:%zu, memory type size:%zu]", node_op_desc->GetName().c_str(),
temp.size(), workspace_memory_type.size());
if (has_workspace_mem_type_attr && (temp.size() != workspace_memory_type.size())) {
GELOGE(INTERNAL_ERROR, "fusion: node[%s], workspace_memory size err![v_temp:%zu, workspace:%zu]",
n->GetName().c_str(), temp.size(), workspace_memory_type.size());
return;
}
for (size_t i = 0; i < temp.size(); i++) {
// fusion: other type's size not means malloc HBM memory
bool workspace_skip_flag = false;
if (has_workspace_mem_type_attr && workspace_memory_type[i] == RT_MEMORY_L1) {
GELOGI(
"fusion: node[%s]workspace index[%d] is not hbm type, add to zero_memory_list, workspace memory type [%ld]",
node_op_desc->GetName().c_str(), i, workspace_memory_type[i]);
workspace_skip_flag = true;
}
if (temp[i] == 0 || workspace_skip_flag) {
zero_memory_list_.emplace_back(n, kWorkspace, static_cast<uint32_t>(i), false);
continue;
}
MemoryBlock *mem_block = ApplyMemory(GetBlockSize(static_cast<size_t>(temp[i]), ranges),
static_cast<size_t>(temp[i]), static_cast<size_t>(temp[i]),
kWorkspace, n, static_cast<uint32_t>(i), workspace_reuse_flag,
is_op_reuse_mem_, false);
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(mem_block == nullptr, continue, "failed to apply memory block.");
CheckWorkspaceReuse(workspace_reuse_flag, i, stream_id, mem_block);
}
ReleaseInputNodeOutMemory(node_out_blocks_, reusable_blocks_[stream_id], n);
}
GELOGD("Assigned memory blocks:");
for (auto mem_block : memory_blocks_) {
GELOGD("%s", mem_block->String().c_str());
(void)mem_block; // Fix warning
}
bool merge_dynamic_batch = false;
GE_IF_BOOL_EXEC(!(ge_disable_reuse_mem_env_ == "1"), merge_dynamic_batch = MergeDynamicBatchBlocks());
GE_IF_BOOL_EXEC((!(ge_disable_reuse_mem_env_ == "1") && !merge_dynamic_batch), ReuseBlocksByLifeTime(ranges.size()));
AssignContinuousBlocks();
ResizeMemoryBlocks();
GELOGD("Memory blocks after resize:");
for (auto mem_block : memory_blocks_) {
GELOGD("%s", mem_block->String().c_str());
(void)mem_block; // Fix warning
}
}
void BlockMemAssigner::CheckWorkspaceReuse(const vector<bool> &workspace_reuse_flag, uint32_t index, int64_t stream_id,
MemoryBlock *mem_block) {
bool reuse_mem_flag =
((workspace_reuse_flag.size() > index) && (workspace_reuse_flag[index] == false)) ? false : true;
if (reuse_mem_flag) {
stream_workspace_blocks_[stream_id].emplace_back(mem_block);
}
}
void BlockMemAssigner::GetNodeWorkSpaceSize(const NodePtr &node, vector<int64_t> &workspace_memory) {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(node->GetOpDesc() == nullptr, return, "Op desc is null.");
vector<int64_t> workspace_byte_nums = node->GetOpDesc()->GetWorkspaceBytes();
GELOGD("node[%s] size:%zu", node->GetOpDesc()->GetName().c_str(), workspace_byte_nums.size());
for (int64_t byte_size : workspace_byte_nums) {
workspace_memory.emplace_back(byte_size);
GELOGD("push back size:%ld", byte_size);
}
}
// descending order
static bool CompareBlockMaxSize(MemoryBlock *left, MemoryBlock *right) {
if (left == nullptr || right == nullptr) {
return false;
}
auto left_max_size = std::max_element(left->RealSizeList().begin(), left->RealSizeList().end());
if (left_max_size != left->RealSizeList().end()) {
auto right_max_size = std::max_element(right->RealSizeList().begin(), right->RealSizeList().end());
if (right_max_size == right->RealSizeList().end() || (*left_max_size > *right_max_size)) {
return true;
}
}
return false;
}
void MergeBlocks(std::vector<MemoryBlock *> &dest, std::vector<MemoryBlock *> &src) {
for (size_t i = 0; i < dest.size(); ++i) {
if (i >= src.size()) {
return;
}
if (dest[i] != nullptr && src[i] != nullptr) {
if (!dest[i]->reuse_mem_ || !src[i]->reuse_mem_) {
GELOGD("Diff batch's workspace can't be reused, i: %zu, dest[i]: %s, stream: %ld, src[i]: %s, stream: %ld.",
i, dest[i]->String().c_str(), dest[i]->stream_id_, src[i]->String().c_str(), src[i]->stream_id_);
continue;
}
for (auto &symbol : src[i]->SymbolList()) {
dest[i]->AddSymbol(symbol);
}
for (size_t j = 0; j < src[i]->NodeTypeIndexList().size(); ++j) {
dest[i]->AddNodeTypeIndex(src[i]->NodeTypeIndexList()[j],
src[i]->RealSizeList()[j],
src[i]->NoAlignSizeList()[j]);
src[i]->deleted_block_ = true;
}
}
}
}
bool BlockMemAssigner::MergeDynamicBatchBlocks() {
bool merged = false;
std::map<std::string, std::vector<MemoryBlock *>> dynamic_batch_blocks;
for (auto block : memory_blocks_) {
if (block == nullptr) {
continue;
}
std::string batch_label;
if (block->IsSameLabel(batch_label)) {
dynamic_batch_blocks[batch_label].emplace_back(block);
}
}
auto it = dynamic_batch_blocks.begin();
auto it_max = it;
// find max block counts
for (; it != dynamic_batch_blocks.end(); ++it) {
if (it->second.size() > it_max->second.size()) {
it_max = it;
}
std::sort(it->second.begin(), it->second.end(), CompareBlockMaxSize);
}
if (it_max != dynamic_batch_blocks.end()) {
GELOGD("MergeDynamicBatch %s block counts %zu", it_max->first.c_str(), it_max->second.size());
}
for (it = dynamic_batch_blocks.begin(); it != dynamic_batch_blocks.end(); ++it) {
if (it != it_max) {
GELOGD("MergeDynamicBatch from %s to %s", it->first.c_str(), it_max->first.c_str());
MergeBlocks(it_max->second, it->second);
merged = true;
}
}
return merged;
}
// asending order
static bool CompareBlockIndex(MemoryBlock *left, MemoryBlock *right) {
if (left == nullptr || right == nullptr) {
return false;
}
if (left->input_index_ < right->input_index_) {
return true;
}
return false;
}
///
/// @ingroup domi
/// @brief order blocks by continuous input index
/// @param [in] blocks need be processed
/// @param [in] input blocks need continuous
/// @param [out] blocks after continuous order
/// @param [in/out] blocks ordered
/// @param [in] input or output
///
void ReAssignContinuousBlocks(const std::vector<MemoryBlock *> &org_blocks,
const std::map<MemoryBlock *, uint32_t> block_map,
std::vector<MemoryBlock *> &dest_blocks, std::vector<MemoryBlock *> &continuous_blocks,
const std::string &type) {
for (auto &memory_block : org_blocks) {
if (memory_block == nullptr || memory_block->deleted_block_) {
continue;
}
if (block_map.find(memory_block) != block_map.end()) {
continue;
}
dest_blocks.emplace_back(memory_block);
}
// add continuous block
std::sort(continuous_blocks.begin(), continuous_blocks.end(), CompareBlockIndex);
size_t count = 0;
for (auto &memory_block : continuous_blocks) {
GE_IF_BOOL_EXEC(memory_block == nullptr, continue);
GELOGI("Block continuous %s index:%d", type.c_str(), memory_block->input_index_);
count++;
if (count == 1) {
memory_block->first_continuous_block_ = true;
}
if (count == continuous_blocks.size()) {
memory_block->last_continuous_block_ = true;
}
dest_blocks.emplace_back(memory_block);
}
}
void BlockMemAssigner::AssignContinuousBlocks() {
for (auto &block_map : node_continuous_input_blocks_) {
std::vector<MemoryBlock *> dest_memory_blocks;
std::map<MemoryBlock *, uint32_t> continuous_block_map;
std::vector<MemoryBlock *> continuous_blocks;
auto it = node_continuous_input_counts_.find(block_map.first);
GE_IF_BOOL_EXEC(it == node_continuous_input_counts_.end(), continue);
GELOGI("Node:%s continuous input block count:%zu input count:%u", block_map.first.c_str(), block_map.second.size(),
it->second);
GE_IF_BOOL_EXEC(it->second != block_map.second.size(), continue);
for (auto &it : block_map.second) {
if (it.second != nullptr) {
continuous_block_map[it.second] = it.first;
it.second->input_index_ = it.first;
continuous_blocks.emplace_back(it.second);
}
}
if (continuous_block_map.size() != continuous_blocks.size()) {
GELOGW("Node:%s continuous input map size:%zu vector size:%zu", block_map.first.c_str(),
continuous_block_map.size(), continuous_blocks.size());
continue;
}
ReAssignContinuousBlocks(memory_blocks_, continuous_block_map, dest_memory_blocks, continuous_blocks, "input");
memory_blocks_.swap(dest_memory_blocks);
}
}
void BlockMemAssigner::ReuseBlocksByLifeTime(size_t range_size) {
// 1 means block size is same so no need to do this
if (range_size <= 1) {
return;
}
for (size_t i = 0; i < memory_blocks_.size(); ++i) {
auto parent = memory_blocks_[i];
if (parent == nullptr || parent->deleted_block_ || parent->continuous_block_) {
continue;
}
if (parent->reuse_mem_ && !IsPostReuse(parent)) {
parent->reuse_mem_ = false;
}
for (size_t j = i + 1; j < memory_blocks_.size(); ++j) {
auto child = memory_blocks_[j];
if (child == nullptr) {
continue;
}
// If node is before atomic_addr_clean node, the continus memory can't be reused.
if (!parent->NodeTypeIndexList().empty() && child->continuous_block_) {
auto node = parent->NodeTypeIndexList()[0].node;
if (node == nullptr || node->GetOpDesc() == nullptr || (node->GetOpDesc()->GetId() < GetAtomicAddrCleanId())) {
continue;
}
}
parent->AddLifeReuseBlock(child, total_node_depend_stream_life_);
}
}
}
///
/// @ingroup domi_omg
/// @brief traverse memory size, resize, calculate offset
/// @param [in&out] memory_blocks_ memory block, after calculating offset
///
void BlockMemAssigner::ResizeMemoryBlocks() {
for (auto &memory_block : memory_blocks_) {
if (memory_block == nullptr || memory_block->deleted_block_ || memory_block->is_zero_copy_) {
continue;
}
if (memory_block->first_continuous_block_) {
mem_offset_ += MEM_ALIGN_SIZE;
}
memory_block->Resize();
memory_block->SetHeadOffset(mem_offset_);
mem_offset_ += memory_block->Size();
memory_block->SetTailOffset(mem_offset_ - 1);
}
GELOGI("mem_offset_ exclude zero_copy_memory is %zu.", mem_offset_);
}
///
/// @ingroup domi
/// @brief given NodeTypeIndex, set offset in Op's OpDef
/// @param [in&out] node_type_index <node, memory type, id>
/// @param [in] offset offset to be set
/// @param [in] size memory size
/// @param [in] real_size memory size in need
/// @return Status result
///
void SetOffsetSize(const NodeTypeIndex &node_type, const MemoryBlock *block,
size_t real_size, size_t no_align_size, bool child_block) {
ge::OpDescPtr op_desc = node_type.node->GetOpDesc();
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(op_desc == nullptr, return, "op_desc is null.");
string graph_name = node_type.node->GetOwnerComputeGraph()->GetName();
vector<int64_t> memorys_type;
int64_t offset = block->HeadOffset();
size_t end = node_type.life_time_end;
bool has_mem_type_attr = ge::AttrUtils::GetListInt(op_desc, ATTR_NAME_OUTPUT_MEM_TYPE_LIST, memorys_type);
if (node_type.mem_type == kOutput) {
vector<int64_t> output_list = op_desc->GetOutputOffset();
for (auto i = static_cast<uint32_t>(output_list.size()); i < node_type.index + 1; i++) {
output_list.emplace_back(kInvalidOffset);
}
if (output_list.empty()) {
GELOGW("Empty output");
return;
}
static const set<string> kSetOffsetTypes = { DATA_TYPE, AIPP_DATA_TYPE, MULTISHAPE, NETOUTPUT };
if ((kSetOffsetTypes.count(op_desc->GetType()) > 0) && !IsKnownSubgraphData(node_type.node)) {
if ((output_list[node_type.index] == kInvalidOffset) || (output_list[node_type.index] < offset)) {
output_list.at(node_type.index) = offset;
}
} else {
// fusion: keep the original other type offset value from op_desc
bool set_out_offset = (!has_mem_type_attr) ||
(memorys_type.size() > node_type.index && memorys_type[node_type.index] != RT_MEMORY_L1);
if (set_out_offset) {
output_list.at(node_type.index) = offset;
}
}
op_desc->SetOutputOffset(output_list);
} else if (node_type.mem_type == kWorkspace) {
vector<int64_t> workspace_list;
workspace_list = op_desc->GetWorkspace();
for (auto i = static_cast<uint32_t>(workspace_list.size()); i < node_type.index + 1; i++) {
workspace_list.emplace_back(kInvalidOffset);
}
vector<int64_t> workspace_mem_type;
bool has_workspace_mem_type = ge::AttrUtils::GetListInt(op_desc, TVM_ATTR_NAME_WORKSPACE_TYPE, workspace_mem_type);
// fusion: keep the original other type offset value from op_desc
bool set_workspace_offset = (!has_workspace_mem_type) ||
(workspace_mem_type.size() > node_type.index && workspace_mem_type[node_type.index] != RT_MEMORY_L1);
if (set_workspace_offset) {
workspace_list.at(node_type.index) = offset;
}
op_desc->SetWorkspace(workspace_list);
}
GELOGI("[IMAS]Set %s name[%s] %s[%u] offset to [%ld] streamid[%ld] size[%zu] realsize[%zu]"
" noalignsize[%zu] life time begin[%zu] life time end[%zu] child[%d:%d:%d:%d] isref[%d].", graph_name.c_str(),
op_desc->GetName().c_str(), node_type.GetMemType().c_str(), node_type.index, offset, op_desc->GetStreamId(),
block->Size(), real_size, no_align_size, op_desc->GetId(), end, child_block, block->reuse_mem_,
block->continuous_block_, block->deleted_block_, node_type.ref_input);
}
void SetBlockOpMemOffset(MemoryBlock *block, bool child_block) {
if (block == nullptr) {
return;
}
size_t index = 0;
size_t real_size = 0;
size_t no_align_size = 0;
auto real_size_list_size = block->RealSizeList().size();
for (const NodeTypeIndex &node_type_index : block->NodeTypeIndexList()) {
if (index < real_size_list_size) {
real_size = block->RealSizeList()[index];
no_align_size = block->NoAlignSizeList()[index];
}
SetOffsetSize(node_type_index, block, real_size, no_align_size, child_block);
index++;
}
}
void BlockMemAssigner::SetOpMemOffset(bool is_zero_copy) {
for (MemoryBlock *memory_block : memory_blocks_) {
if (memory_block == nullptr || memory_block->deleted_block_) {
continue;
}
if ((is_zero_copy && !memory_block->is_zero_copy_) || (!is_zero_copy && memory_block->is_zero_copy_)) {
continue;
}
SetBlockOpMemOffset(memory_block, false);
for (MemoryBlock *child_block : memory_block->ChildBlockList()) {
SetBlockOpMemOffset(child_block, true);
}
}
if (!is_zero_copy) {
for (const NodeTypeIndex &node_type_index : zero_memory_list_) {
MemoryBlock block(0, 0);
SetOffsetSize(node_type_index, &block, 0, 0, false);
}
}
}
Status BlockMemAssigner::Assign() {
vector<int64_t> ranges;
if (GetMemoryRanges(ranges) != SUCCESS) {
GELOGE(FAILED, "GetMemoryRanges Fail!");
return FAILED;
}
GE_IF_BOOL_EXEC(ranges.empty(), return SUCCESS);
AssignMemoryWithReuse(ranges);
SetOpMemOffset(false);
return SUCCESS;
}
bool BlockMemAssigner::CheckIsZeroMemNodeType(const string &node_type) const {
return (node_type == VARIABLE) || (node_type == CONSTANT) || (node_type == MULTISHAPE) ||
(node_type == HCOMBROADCAST) || (node_type == CONSTANTOP) ||
(node_type == ASSIGNADD) || (node_type == ASSIGNSUB) || (node_type == ASSIGN) || (node_type == HVDWAIT) ||
(node_type == HVDCALLBACKBROADCAST);
}
} // namespace ge