You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1555 lines
69 KiB
1555 lines
69 KiB
/**
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "graph/build/memory/graph_mem_assigner.h"
|
|
#include <cstring>
|
|
#include <set>
|
|
#include "common/math/math_util.h"
|
|
#include "common/util/error_manager/error_manager.h"
|
|
#include "framework/common/debug/ge_log.h"
|
|
#include "graph/build/memory/hybrid_mem_assigner.h"
|
|
#include "graph/build/memory/var_mem_assign_util.h"
|
|
#include "graph/build/memory/block_mem_assigner.h"
|
|
#include "graph/common/omg_util.h"
|
|
#include "graph/debug/ge_attr_define.h"
|
|
#include "graph/ge_attr_value.h"
|
|
#include "graph/manager/graph_var_manager.h"
|
|
#include "graph/utils/tensor_utils.h"
|
|
#include "graph/utils/type_utils.h"
|
|
|
|
namespace {
|
|
const int kDataOutputIndex = 0;
|
|
const int kAllInputAddrIsAtomic = -1;
|
|
const int kVirtualInputNodeMemoryReuse = 0;
|
|
const int kVirtualOutputNodeMemoryReuse = 1;
|
|
const size_t kVirtualInputNodeOutputSize = 1;
|
|
const size_t kVirtualOutputNodeInputSize = 1;
|
|
const size_t kVirtualNodeDataIndex = 0;
|
|
const char *const kMbatchNodeNameFlag = "_ascend_mbatch_batch_";
|
|
int64_t GetSymbolOutputOffset(const std::map<std::string, std::string> &anchor_to_symbol,
|
|
const std::map<std::string, std::list<ge::NodeIndexIO>> &symbol_to_anchors,
|
|
const ge::NodePtr &node, const uint32_t i) {
|
|
ge::NodeIndexIO cur_node_index_io(node, i, ge::kOut);
|
|
auto iter1 = anchor_to_symbol.find(cur_node_index_io.ToString());
|
|
if (iter1 == anchor_to_symbol.end()) {
|
|
return ge::kInvalidOffset;
|
|
}
|
|
auto out_symbol = iter1->second;
|
|
auto iter2 = symbol_to_anchors.find(out_symbol);
|
|
if (iter2 == symbol_to_anchors.end()) {
|
|
return ge::kInvalidOffset;
|
|
}
|
|
for (const auto &node_index_io : iter2->second) {
|
|
if (node_index_io.value_ == out_symbol) {
|
|
vector<int64_t> output_list = node->GetOpDesc()->GetOutputOffset();
|
|
vector<int64_t> symbol_output_list = node_index_io.node_->GetOpDesc()->GetOutputOffset();
|
|
if (node_index_io.index_ >= symbol_output_list.size()) {
|
|
return ge::kInvalidOffset;
|
|
}
|
|
GELOGD("Node %s %uth output offset is %ld, Symbol %s output offset is %ld.", node->GetName().c_str(), i,
|
|
output_list[i], iter2->first.c_str(), symbol_output_list.at(node_index_io.index_));
|
|
return symbol_output_list.at(node_index_io.index_);
|
|
}
|
|
}
|
|
return ge::kInvalidOffset;
|
|
}
|
|
} // namespace
|
|
namespace ge {
|
|
Status VariableMemoryAssigner::Assign() {
|
|
Status result = ge::VarMemAssignUtil::AssignConstantOpMemory(compute_graph_);
|
|
if (result != ge::SUCCESS) {
|
|
return result;
|
|
}
|
|
|
|
result = ge::VarMemAssignUtil::AssignVarMemory(compute_graph_);
|
|
if (result != ge::SUCCESS) {
|
|
return result;
|
|
}
|
|
return ge::SUCCESS;
|
|
}
|
|
|
|
Status VariableMemoryAssigner::AssignVarAttr2Nodes() {
|
|
Status result = ge::VarMemAssignUtil::AssignVarAttr2Nodes(compute_graph_);
|
|
if (result != ge::SUCCESS) {
|
|
return result;
|
|
}
|
|
return ge::SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::AssignMemory() {
|
|
ge::HybridMemAssignerPtr mem_assigner(new (std::nothrow) HybridMemAssigner(compute_graph_));
|
|
if (mem_assigner->Assign() != ge::SUCCESS) {
|
|
GELOGE(ge::FAILED, "Memory assigner failed");
|
|
return ge::FAILED;
|
|
}
|
|
MemoryOffset memory_offset(RT_MEMORY_HBM, mem_assigner->GetMemOffset());
|
|
memory_offset_.push_back(memory_offset);
|
|
|
|
auto session_id = compute_graph_->GetSessionID();
|
|
int64_t var_size_before_assign = ge::VarManager::Instance(session_id)->GetVarMemSize(RT_MEMORY_HBM);
|
|
auto variable_assigner =
|
|
std::unique_ptr<ge::VariableMemoryAssigner>(new (std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
|
|
if (variable_assigner == nullptr) {
|
|
GELOGE(ge::FAILED, "Alloc VariableMemoryAssigner failed.");
|
|
return ge::FAILED;
|
|
}
|
|
|
|
if (variable_assigner->Assign() != ge::SUCCESS) {
|
|
return ge::FAILED;
|
|
}
|
|
int64_t var_size_assign = ge::VarManager::Instance(session_id)->GetVarMemSize(RT_MEMORY_HBM) - var_size_before_assign;
|
|
GELOGI("GraphMemoryAssigner::AssignMemory variable size = %ld", var_size_assign);
|
|
|
|
mem_assigner_ = std::move(mem_assigner);
|
|
|
|
return ge::SUCCESS;
|
|
}
|
|
|
|
ge::Status GraphMemoryAssigner::AssignVarAttr2Nodes() {
|
|
auto variable_assigner =
|
|
std::unique_ptr<ge::VariableMemoryAssigner>(new (std::nothrow) ge::VariableMemoryAssigner(compute_graph_));
|
|
if (variable_assigner == nullptr) {
|
|
GELOGE(ge::FAILED, "Alloc VariableMemoryAssigner failed.");
|
|
return ge::FAILED;
|
|
}
|
|
if (variable_assigner->AssignVarAttr2Nodes() != ge::SUCCESS) {
|
|
return ge::FAILED;
|
|
}
|
|
return ge::SUCCESS;
|
|
}
|
|
|
|
ge::Status GraphMemoryAssigner::CalculateTensorRealSizeAndOutSize(const ge::ConstGeTensorDescPtr &output_desc,
|
|
int64_t dim_index, int64_t &output_mem_size,
|
|
int64_t &batch_dim_num, int64_t &out_size) {
|
|
graphStatus graph_status = ge::TensorUtils::GetSize(*output_desc, out_size);
|
|
if (graph_status != GRAPH_SUCCESS) {
|
|
GELOGE(FAILED, "Opdesc GetSize failed!");
|
|
return FAILED;
|
|
}
|
|
|
|
GeShape output_shape = output_desc->GetShape();
|
|
std::vector<int64_t> output_dims = output_shape.GetDims();
|
|
if (dim_index >= static_cast<int64_t>(output_dims.size())) {
|
|
GELOGE(FAILED, "Invaild value(%ld) of attr _reuse_input_on_dim_index, which is out of data range [0, %zu).",
|
|
dim_index, output_dims.size());
|
|
return FAILED;
|
|
}
|
|
|
|
for (int64_t index = 0; index < dim_index; index++) {
|
|
FMK_INT64_MULCHECK(batch_dim_num, output_dims[index]);
|
|
batch_dim_num *= output_dims[index];
|
|
output_dims[index] = 1;
|
|
}
|
|
|
|
output_shape = GeShape(output_dims);
|
|
Format out_format = output_desc->GetFormat();
|
|
DataType data_type = output_desc->GetDataType();
|
|
|
|
graph_status = ge::TensorUtils::CalcTensorMemSize(output_shape, out_format, data_type, output_mem_size);
|
|
if (graph_status != GRAPH_SUCCESS) {
|
|
GELOGE(graph_status, "Opdesc CalcTensorMemSize failed!");
|
|
return FAILED;
|
|
}
|
|
|
|
if (output_mem_size < 0) {
|
|
GELOGE(FAILED, "After calculating tensor memory size, output_mem_size = %ld, out of data range [0, %ld]",
|
|
output_mem_size, INT64_MAX);
|
|
return FAILED;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::GetMaxBatchLabel(const map<string, vector<NodePtr>> &mem_reuse_virtual_nodes_map,
|
|
int32_t mem_reuse_model, string &max_batch_label) {
|
|
for (auto &i_map : mem_reuse_virtual_nodes_map) {
|
|
vector<NodePtr> virtual_nodes_list = i_map.second;
|
|
vector<int64_t> max_shape_dims;
|
|
size_t max_batch_dim = 0;
|
|
bool max_batch_dim_find = false;
|
|
for (size_t i = 0; i < virtual_nodes_list.size(); ++i) {
|
|
GE_CHECK_NOTNULL(virtual_nodes_list[i]);
|
|
OpDescPtr op_desc = virtual_nodes_list[i]->GetOpDesc();
|
|
GE_CHECK_NOTNULL(op_desc);
|
|
|
|
ge::ConstGeTensorDescPtr input_output_desc;
|
|
if (mem_reuse_model == kVirtualInputNodeMemoryReuse) {
|
|
input_output_desc = op_desc->GetOutputDescPtr(kVirtualNodeDataIndex);
|
|
} else if (mem_reuse_model == kVirtualOutputNodeMemoryReuse) {
|
|
input_output_desc = op_desc->GetInputDescPtr(kVirtualNodeDataIndex);
|
|
} else {
|
|
GELOGE(FAILED, "Invalid parameter memory reuse model, which is: %d.", mem_reuse_model);
|
|
return FAILED;
|
|
}
|
|
GE_CHECK_NOTNULL(input_output_desc);
|
|
|
|
if (i == 0) {
|
|
// All ops must have ATTR_NAME_BATCH_LABEL, no need to check return value.
|
|
(void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, max_batch_label);
|
|
max_shape_dims = input_output_desc->GetShape().GetDims();
|
|
} else {
|
|
vector<int64_t> current_shape_dims = input_output_desc->GetShape().GetDims();
|
|
if (current_shape_dims.size() != max_shape_dims.size()) {
|
|
GELOGE(FAILED, "The shape size of several nodes between multiple batches does not match.");
|
|
return FAILED;
|
|
}
|
|
for (size_t j = 0; j < current_shape_dims.size(); ++j) {
|
|
if (current_shape_dims[j] == max_shape_dims[j]) {
|
|
continue;
|
|
}
|
|
if (max_batch_dim_find && max_batch_dim != j) {
|
|
GELOGE(FAILED, "The shape of several nodes between multiple batches does not match.");
|
|
return FAILED;
|
|
}
|
|
max_batch_dim_find = true;
|
|
max_batch_dim = j;
|
|
if (current_shape_dims[j] > max_shape_dims[j]) {
|
|
max_shape_dims[j] = current_shape_dims[j];
|
|
// All ops must have ATTR_NAME_BATCH_LABEL, no need to check return value.
|
|
(void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, max_batch_label);
|
|
}
|
|
// Only compare the first different dim in shape.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// In every element of virtual_input_nodes_map, the label of the max batch node is the same.
|
|
break;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::ReAssignMemory(bool is_loop_graph, size_t &mem_offset) {
|
|
if (memory_offset_.empty()) {
|
|
GELOGE(FAILED, "memory_offset_ is empty.");
|
|
return ge::FAILED;
|
|
}
|
|
|
|
GE_CHK_STATUS_RET(ReAssignContinuousMemory(is_loop_graph), "ReAssignContinuousMemory Failed!");
|
|
|
|
GE_CHK_STATUS_RET(ReAssignReuseAndNoPaddingContinuousInputMemory(),
|
|
"ReAssignReuseAndNoPaddingContinuousInputMemory Failed!");
|
|
|
|
GE_CHK_STATUS_RET(ReAssignReuseAndNoPaddingContinuousOutputMemory(),
|
|
"ReAssignReuseAndNoPaddingContinuousOutputMemory Failed!");
|
|
|
|
GE_CHK_STATUS_RET(ReAssignAtomicMemory(is_loop_graph), "ReAssignAtomicMemory Failed!");
|
|
|
|
mem_offset = memory_offset_[0].mem_offset_;
|
|
|
|
auto session_id = compute_graph_->GetSessionID();
|
|
if (mem_offset > VarManager::Instance(session_id)->GetGraphMemoryMaxSize()) {
|
|
GELOGE(ge::FAILED, "Current memoffset %zu is greater than memory manager malloc max size %zu", mem_offset,
|
|
VarManager::Instance(session_id)->GetGraphMemoryMaxSize());
|
|
ErrorManager::GetInstance().ATCReportErrMessage("E19022", {"size", "item", "maxsize"}, {std::to_string(mem_offset),
|
|
"featuremap", std::to_string(VarManager::Instance(session_id)->GetGraphMemoryMaxSize())});
|
|
return ge::FAILED;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::AssignZeroCopyMemory(size_t &mem_offset, size_t &zero_mem_copy_size) {
|
|
BlockMemAssignerPtr priority_assigner = std::move(mem_assigner_->GetPriorityAssinger());
|
|
GE_IF_BOOL_EXEC(priority_assigner == nullptr, GELOGE(FAILED, "Get priority_assigner failed."); return ge::FAILED;);
|
|
|
|
size_t mem_offset_tmp = mem_offset;
|
|
|
|
// set offset for zero copy block
|
|
for (auto &memory_block : priority_assigner->GetMemoryBlocks()) {
|
|
if (memory_block == nullptr || memory_block->deleted_block_ || !memory_block->is_zero_copy_) {
|
|
continue;
|
|
}
|
|
memory_block->Resize();
|
|
memory_block->SetHeadOffset(mem_offset);
|
|
mem_offset += memory_block->Size();
|
|
memory_block->SetTailOffset(mem_offset - 1);
|
|
}
|
|
GELOGI("mem_offset_ include zero_copy_memory is %zu.", mem_offset);
|
|
|
|
// set offset for zero copy nodes
|
|
priority_assigner->SetOpMemOffset(true);
|
|
zero_mem_copy_size = mem_offset - mem_offset_tmp;
|
|
memory_offset_[0].mem_offset_ = mem_offset;
|
|
|
|
GELOGI("max_mem_offset:%zu, mem_offset:%zu, zero_mem_copy_size:%zu.", mem_offset, mem_offset_tmp, zero_mem_copy_size);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::ReAssignContinuousMemory(bool is_loop_graph) {
|
|
GELOGI("Begin to reassign continuous memory");
|
|
Status ret;
|
|
for (auto &node : compute_graph_->GetAllNodes()) {
|
|
// Get the continuous input type of the node, default is false
|
|
bool is_input_continuous = false;
|
|
GE_CHECK_NOTNULL(node->GetOpDesc());
|
|
// If GetBool fail, is_input_continuous is false.
|
|
(void)ge::AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_CONTINUOUS_INPUT, is_input_continuous);
|
|
|
|
// Assign continuous input memory
|
|
if (is_input_continuous) {
|
|
int64_t mem_clean_start = 0;
|
|
int64_t mem_clean_size = 0;
|
|
ret = AssignContinuousInputMemory(node, mem_clean_start, mem_clean_size);
|
|
if (ret != ge::SUCCESS) {
|
|
GELOGE(ret, "Assign continuous input memory failed!");
|
|
return ret;
|
|
}
|
|
|
|
// Clean up atomic address, eg, hcom node
|
|
vector<int32_t> input_indexes;
|
|
// If GetListInt fail, input_indexes is empty.
|
|
(void)ge::AttrUtils::GetListInt(node->GetOpDesc(), ATOMIC_ATTR_INPUT_INDEX, input_indexes);
|
|
|
|
if (!input_indexes.empty() && input_indexes[0] == kAllInputAddrIsAtomic) {
|
|
// check whether there is an atomic conflict between the current node and the peer out node
|
|
if (!CheckInputIsSupportAtomic(node)) {
|
|
GELOGE(ge::FAILED,
|
|
"There is an atomic conflict between the current node and the peer out node, not supported!");
|
|
return ge::FAILED;
|
|
}
|
|
|
|
const auto &in_control_anchor = node->GetInControlAnchor();
|
|
GE_CHECK_NOTNULL(in_control_anchor);
|
|
for (const auto &peer_out_control_anchor : in_control_anchor->GetPeerOutControlAnchors()) {
|
|
auto peer_out_node = peer_out_control_anchor->GetOwnerNode();
|
|
if (peer_out_node->GetType() == ATOMICADDRCLEAN) {
|
|
ret = SetAtomicCleanAttr(peer_out_node, {mem_clean_start}, {mem_clean_size});
|
|
if (ret != SUCCESS) {
|
|
GELOGE(ret, "Failed to set attr for atomic addr clean node %s.", peer_out_node->GetName().c_str());
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get the reference type of the node, default is false
|
|
bool is_ref = false;
|
|
// If GetBool fail, is_ref is false.
|
|
(void)ge::AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_REFERENCE, is_ref);
|
|
|
|
// Get the continuous output type of the node, default is false
|
|
bool is_output_continuous = false;
|
|
// If GetBool fail, is_output_continuous is false.
|
|
(void)ge::AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_CONTINUOUS_OUTPUT, is_output_continuous);
|
|
|
|
// If the output is ref type and refers to the ref of an input, the name of the output
|
|
// and the input are the same. Ge encounters ref type, finds matching relationship according
|
|
// to the names of input and output, and allocates the same memory address, eg: HCOMBroadcast
|
|
if (!is_ref && is_output_continuous) { // Assign continuous output memory
|
|
ret = AssignContinuousOutputMemory(node);
|
|
if (ret != ge::SUCCESS) {
|
|
GELOGE(ret, "Assign reference memory failed!");
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
GELOGI("After reassign continuous memory, memoffset = %zu.", memory_offset_[0].mem_offset_);
|
|
return ge::SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::AssignContinuousInputMemory(const ge::NodePtr &node, int64_t &continuous_mem_start,
|
|
int64_t &continuous_mem_size) {
|
|
GELOGI("Current node %s needs continuous input.", node->GetName().c_str());
|
|
continuous_mem_start = memory_offset_[0].mem_offset_;
|
|
bool continuous_input_alloc = false;
|
|
(void)ge::AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_CONTINUOUS_INPUT_ALLOC, continuous_input_alloc);
|
|
for (auto &in_data_anchor : node->GetAllInDataAnchors()) {
|
|
auto peer_out_data_anchor = in_data_anchor->GetPeerOutAnchor();
|
|
GE_IF_BOOL_EXEC(peer_out_data_anchor == nullptr, continue);
|
|
|
|
auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
|
|
GE_IF_BOOL_EXEC(peer_op_desc == nullptr, continue);
|
|
bool is_peer_output_continuous = false;
|
|
// If GetBool fail, is_peer_output_continuous is false.
|
|
(void)ge::AttrUtils::GetBool(peer_op_desc, ATTR_NAME_CONTINUOUS_OUTPUT, is_peer_output_continuous);
|
|
|
|
// Get peer node output size, if size == 1(peer node has only one output), continuous input of the node and
|
|
// continuous output of the previous node is the same, we can support it. If size != 1, there may be
|
|
// conflict between the two, we can not support it.
|
|
auto peer_output_size = peer_op_desc->GetOutputsSize();
|
|
GE_IF_BOOL_EXEC(is_peer_output_continuous && (peer_output_size != 1),
|
|
GELOGE(PARAM_INVALID,
|
|
"Current node %s requires continuous input, while the previous node %s requires "
|
|
"continuous output. There may be conflict between the two. This node is not supported now.",
|
|
node->GetOpDesc()->GetName().c_str(), peer_op_desc->GetName().c_str());
|
|
return PARAM_INVALID;);
|
|
|
|
bool is_peer_reference = false;
|
|
// If GetBool fail, is_peer_reference is false.
|
|
(void)AttrUtils::GetBool(peer_op_desc, ATTR_NAME_REFERENCE, is_peer_reference);
|
|
GE_IF_BOOL_EXEC(is_peer_reference,
|
|
GELOGE(PARAM_INVALID,
|
|
"Current node %s requires continuous input, while the previous node %s requires "
|
|
"reference. There may be conflict between the two. This node is not supported now.",
|
|
node->GetOpDesc()->GetName().c_str(), peer_op_desc->GetName().c_str());
|
|
return PARAM_INVALID;);
|
|
|
|
vector<int64_t> output_list = peer_op_desc->GetOutputOffset();
|
|
std::vector<int64_t> offsets_for_fusion = {};
|
|
bool has_offset_attr =
|
|
AttrUtils::GetListInt(peer_op_desc, ATTR_NAME_OUTPUT_OFFSET_FOR_BUFFER_FUSION, offsets_for_fusion);
|
|
if (peer_out_data_anchor->GetIdx() < static_cast<int>(output_list.size())) {
|
|
if (continuous_input_alloc && !has_offset_attr) {
|
|
if (in_data_anchor->GetIdx() == 0) {
|
|
continuous_mem_start = output_list.at(peer_out_data_anchor->GetIdx());
|
|
}
|
|
// can not use else if, incase only one input
|
|
if (in_data_anchor->GetIdx() == static_cast<int>(node->GetAllInDataAnchors().size()) - 1) {
|
|
int64_t tensor_desc_size = 0;
|
|
Status ret = ge::TensorUtils::GetSize(*(peer_op_desc->GetOutputDescPtr(peer_out_data_anchor->GetIdx())),
|
|
tensor_desc_size);
|
|
GE_IF_BOOL_EXEC(ret != ge::SUCCESS, GELOGE(FAILED, "GetSize failed."); return FAILED;);
|
|
|
|
tensor_desc_size = (tensor_desc_size + MEM_ALIGN_SIZE - 1) / MEM_ALIGN_SIZE * MEM_ALIGN_SIZE;
|
|
continuous_mem_size =
|
|
output_list.at(peer_out_data_anchor->GetIdx()) - continuous_mem_start + tensor_desc_size + MEM_ALIGN_SIZE;
|
|
}
|
|
GELOGI(
|
|
"[IMAS]Check Continuous input : Set %s name[%s] output[%d] offset to [%zu] stream_id[%ld] size[%zu] "
|
|
"real_size[%u].",
|
|
node->GetOwnerComputeGraph()->GetName().c_str(), peer_op_desc->GetName().c_str(),
|
|
peer_out_data_anchor->GetIdx(), output_list.at(peer_out_data_anchor->GetIdx()), peer_op_desc->GetStreamId(),
|
|
0, 0);
|
|
continue;
|
|
}
|
|
output_list.at(peer_out_data_anchor->GetIdx()) = memory_offset_[0].mem_offset_;
|
|
} else {
|
|
GELOGE(FAILED, "index : %d is out of range.", peer_out_data_anchor->GetIdx());
|
|
return FAILED;
|
|
}
|
|
peer_op_desc->SetOutputOffset(output_list);
|
|
size_t pre_mem_offset = memory_offset_[0].mem_offset_;
|
|
|
|
int64_t tensor_desc_size = 0;
|
|
if (has_offset_attr) {
|
|
if (peer_out_data_anchor->GetIdx() < static_cast<int>(offsets_for_fusion.size())) {
|
|
auto offset_for_fusion = offsets_for_fusion[peer_out_data_anchor->GetIdx()];
|
|
memory_offset_[0].mem_offset_ += offset_for_fusion;
|
|
} else {
|
|
GELOGE(FAILED, "fusion: peer node %s index : %d is out of range.", peer_op_desc->GetName().c_str(),
|
|
peer_out_data_anchor->GetIdx());
|
|
return FAILED;
|
|
}
|
|
} else {
|
|
Status ret =
|
|
TensorUtils::GetSize(*(peer_op_desc->GetOutputDescPtr(peer_out_data_anchor->GetIdx())), tensor_desc_size);
|
|
GE_IF_BOOL_EXEC(ret != ge::SUCCESS, GELOGE(FAILED, "GetSize failed."); return FAILED;);
|
|
|
|
memory_offset_[0].mem_offset_ += tensor_desc_size;
|
|
}
|
|
|
|
// If set tensor_actual_size, Memory alignment is not required.
|
|
int32_t is_tensor_actual_size = 0;
|
|
ge::AttrUtils::GetInt(peer_op_desc, ATTR_NAME_GET_TENSOR_ACTUAL_SIZE, is_tensor_actual_size);
|
|
if (is_tensor_actual_size == 0) {
|
|
AlignMemOffset(MEM_ALIGN_SIZE);
|
|
}
|
|
GELOGI(
|
|
"[IMAS]Continuous input : Set %s name[%s] output[%d] offset to [%zu] stream_id[%ld] size[%zu] "
|
|
"real_size[%ld].",
|
|
node->GetOwnerComputeGraph()->GetName().c_str(), peer_op_desc->GetName().c_str(), peer_out_data_anchor->GetIdx(),
|
|
pre_mem_offset, peer_op_desc->GetStreamId(), (memory_offset_[0].mem_offset_ - pre_mem_offset), tensor_desc_size);
|
|
}
|
|
|
|
memory_offset_[0].mem_offset_ += MEM_ALIGN_SIZE;
|
|
if (!continuous_input_alloc) {
|
|
continuous_mem_size = memory_offset_[0].mem_offset_ - continuous_mem_start;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::AssignContinuousOutputMemory(const ge::NodePtr &node) {
|
|
GELOGI("Current node %s needs continuous output.", node->GetName().c_str());
|
|
auto out_op_desc = node->GetOpDesc();
|
|
GE_IF_BOOL_EXEC(out_op_desc == nullptr, GELOGE(ge::FAILED, "out_op_desc is null."); return ge::FAILED);
|
|
vector<int64_t> output_list = out_op_desc->GetOutputOffset();
|
|
|
|
if ((out_op_desc->GetOutputsSize() > output_list.size()) || (output_list.size() == 0)) {
|
|
GELOGE(ge::FAILED, "The size %zu of node output desc is more than output_list's size %zu.",
|
|
out_op_desc->GetOutputsSize(), output_list.size());
|
|
return ge::FAILED;
|
|
}
|
|
|
|
size_t mem_offset = output_list[0];
|
|
for (auto &out_data_anchor : node->GetAllOutDataAnchors()) {
|
|
output_list[out_data_anchor->GetIdx()] = mem_offset;
|
|
int64_t tensor_desc_size = 0;
|
|
if (ge::TensorUtils::GetSize(*(out_op_desc->GetOutputDescPtr(out_data_anchor->GetIdx())), tensor_desc_size) !=
|
|
ge::SUCCESS) {
|
|
GELOGE(FAILED, "GetSize failed.");
|
|
return FAILED;
|
|
}
|
|
mem_offset += tensor_desc_size;
|
|
if (mem_offset <= 0) {
|
|
return FAILED;
|
|
}
|
|
mem_offset = (mem_offset + MEM_ALIGN_SIZE - 1) / MEM_ALIGN_SIZE * MEM_ALIGN_SIZE;
|
|
GELOGI(
|
|
"[IMAS]Continuous output : Set %s name[%s] output[%d] offset to [%zu] stream_id[%ld] size[%ld] "
|
|
"real_size[%ld].",
|
|
node->GetOwnerComputeGraph()->GetName().c_str(), out_op_desc->GetName().c_str(), out_data_anchor->GetIdx(),
|
|
output_list[out_data_anchor->GetIdx()] , out_op_desc->GetStreamId(), tensor_desc_size, tensor_desc_size);
|
|
}
|
|
out_op_desc->SetOutputOffset(output_list);
|
|
return ge::SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::ReAssignVirtualInputNodeMemory(NodePtr node, size_t &mem_offset_reuse) {
|
|
OpDescPtr op_desc = node->GetOpDesc();
|
|
vector<int64_t> output_list = op_desc->GetOutputOffset();
|
|
if (output_list.empty()) {
|
|
GELOGE(FAILED, "Outputoffset is empty node name:%s", node->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
output_list.at(0) = mem_offset_reuse;
|
|
op_desc->SetOutputOffset(output_list);
|
|
GELOGI("Set virtual input node %s output offset to %zu.", op_desc->GetName().c_str(), mem_offset_reuse);
|
|
|
|
int64_t attr_dim_index;
|
|
bool get_attr_dim_flag = ge::AttrUtils::GetInt(op_desc, ATTR_NAME_REUSE_INPUT_ON_DIM_INDEX, attr_dim_index);
|
|
if (!get_attr_dim_flag) {
|
|
GELOGE(FAILED, "Get attr _reuse_input_on_dim_index failed.");
|
|
return FAILED;
|
|
}
|
|
|
|
size_t extra_memory_size = 0;
|
|
for (const auto &in_data_anchor : node->GetAllInDataAnchors()) {
|
|
auto peer_out_data_anchor = in_data_anchor->GetPeerOutAnchor();
|
|
GE_CHECK_NOTNULL(peer_out_data_anchor);
|
|
auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
|
|
GE_CHECK_NOTNULL(peer_op_desc);
|
|
vector<int64_t> output_offsets = peer_op_desc->GetOutputOffset();
|
|
if (peer_out_data_anchor->GetIdx() >= static_cast<int>(output_offsets.size())) {
|
|
GELOGE(ge::FAILED, "Index : %d is out of range.", peer_out_data_anchor->GetIdx());
|
|
return ge::FAILED;
|
|
}
|
|
output_offsets.at(peer_out_data_anchor->GetIdx()) = mem_offset_reuse;
|
|
peer_op_desc->SetOutputOffset(output_offsets);
|
|
size_t pre_mem_offset = mem_offset_reuse;
|
|
|
|
// Calculate tensor real size of each piece of data and out size of complete data
|
|
ge::ConstGeTensorDescPtr output_desc = peer_op_desc->GetOutputDescPtr(peer_out_data_anchor->GetIdx());
|
|
GE_CHECK_NOTNULL(output_desc);
|
|
int64_t output_mem_size;
|
|
int64_t batch_dim_num = 1;
|
|
int64_t out_size;
|
|
if (CalculateTensorRealSizeAndOutSize(output_desc, attr_dim_index, output_mem_size, batch_dim_num, out_size) !=
|
|
SUCCESS) {
|
|
GELOGE(FAILED, "CalculateTensorRealSizeAndOutSize failed for node %s output [%d].",
|
|
peer_op_desc->GetName().c_str(), peer_out_data_anchor->GetIdx());
|
|
return FAILED;
|
|
}
|
|
|
|
mem_offset_reuse += output_mem_size;
|
|
extra_memory_size = extra_memory_size + out_size - output_mem_size;
|
|
|
|
GELOGI("[IMAS]Virtual node optimize: set %s name[%s] output[%d] offset to [%zu] stream_id[%ld] size[%ld] "
|
|
"real_size[%ld].",
|
|
node->GetOwnerComputeGraph()->GetName().c_str(), peer_op_desc->GetName().c_str(),
|
|
peer_out_data_anchor->GetIdx(), pre_mem_offset, peer_op_desc->GetStreamId(), out_size,
|
|
output_mem_size);
|
|
}
|
|
mem_offset_reuse += extra_memory_size;
|
|
size_t after_mem_offset = mem_offset_reuse;
|
|
GELOGI("After reassign virtual input node[name: %s, type: %s] memory, memory offset = %zu.",
|
|
op_desc->GetName().c_str(), op_desc->GetType().c_str(), after_mem_offset);
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::ReAssignReuseAndNoPaddingContinuousInputMemory() {
|
|
map<string, vector<NodePtr>> mem_reuse_virtual_input_nodes_map;
|
|
for (const auto &n : compute_graph_->GetAllNodes()) {
|
|
OpDescPtr op_desc = n->GetOpDesc();
|
|
GE_CHECK_NOTNULL(op_desc);
|
|
bool attr_continuous = false;
|
|
bool get_continuous_flag = ge::AttrUtils::GetBool(op_desc, ATTR_NAME_NOPADDING_CONTINUOUS_INPUT, attr_continuous);
|
|
GE_IF_BOOL_EXEC(!get_continuous_flag, continue);
|
|
bool attr_reuse = false;
|
|
bool get_reuse_flag = ge::AttrUtils::GetBool(op_desc, ATTR_NAME_OUTPUT_REUSE_INPUT, attr_reuse);
|
|
GE_IF_BOOL_EXEC(!get_reuse_flag, continue);
|
|
|
|
if (attr_reuse && attr_continuous) {
|
|
if (op_desc->GetOutputsSize() != kVirtualInputNodeOutputSize) {
|
|
// When current virtual node has several outputs, can't directly determine which input is the tensor for reuse.
|
|
GELOGE(FAILED, "Only one output is supported, current virtual node %s has %zu inputs.", n->GetName().c_str(),
|
|
op_desc->GetOutputsSize());
|
|
return FAILED;
|
|
}
|
|
|
|
GELOGD("Start to reassign memory for virtual input node, memory offset = %zu.", memory_offset_[0].mem_offset_);
|
|
string batch_label_string;
|
|
// Not all ops have ATTR_NAME_BATCH_LABEL, no need to check return value, only check out parameter
|
|
(void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label_string);
|
|
if (batch_label_string.empty()) {
|
|
size_t node_mem_offset = memory_offset_[0].mem_offset_;
|
|
// No ATTR_NAME_BATCH_LABEL, no need to reuse memory.
|
|
Status status = ReAssignVirtualInputNodeMemory(n, node_mem_offset);
|
|
if (status != SUCCESS) {
|
|
GELOGE(FAILED, "Reassign memory of virtual input node failed, node name: %s.", n->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
|
|
memory_offset_[0].mem_offset_ = node_mem_offset;
|
|
AlignMemOffset(MEM_ALIGN_SIZE);
|
|
GELOGD("After reassign memory for virtual input node, align memory = %zu.", memory_offset_[0].mem_offset_);
|
|
} else {
|
|
// Has ATTR_NAME_BATCH_LABEL, for dynamic multi-batch node, need to reuse memory.
|
|
string current_node_full_name = op_desc->GetName();
|
|
size_t pos = current_node_full_name.find(kMbatchNodeNameFlag);
|
|
if (pos == string::npos) {
|
|
GELOGE(FAILED, "Cannot find key string [%s] of multi-batch in name of virtual input node, node name: %s.",
|
|
kMbatchNodeNameFlag, n->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
string fixed_name = current_node_full_name.substr(0, pos);
|
|
vector<NodePtr> parallel_virtual_input_nodes;
|
|
if(mem_reuse_virtual_input_nodes_map.count(fixed_name) != 0) {
|
|
parallel_virtual_input_nodes = mem_reuse_virtual_input_nodes_map[fixed_name];
|
|
}
|
|
parallel_virtual_input_nodes.emplace_back(n);
|
|
mem_reuse_virtual_input_nodes_map[fixed_name] = parallel_virtual_input_nodes;
|
|
}
|
|
}
|
|
}
|
|
|
|
int32_t mem_reuse_model = 0;
|
|
if (ReAssignVirtualNodesMemory(mem_reuse_virtual_input_nodes_map, mem_reuse_model) != SUCCESS) {
|
|
GELOGE(FAILED, "Reassign memory of virtual input nodes failed.");
|
|
return FAILED;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::ReAssignVirtualOutputNodeMemory(NodePtr node, size_t &mem_offset_reuse) {
|
|
OpDescPtr op_desc = node->GetOpDesc();
|
|
|
|
// 1. set memory of to be reused input tensor
|
|
auto in_data_anchor_list = node->GetAllInDataAnchors();
|
|
auto peer_out_data_anchor = in_data_anchor_list.at(0)->GetPeerOutAnchor();
|
|
GE_CHECK_NOTNULL(peer_out_data_anchor);
|
|
auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
|
|
GE_CHECK_NOTNULL(peer_op_desc);
|
|
vector<int64_t> in_node_output_offsets = peer_op_desc->GetOutputOffset();
|
|
if (peer_out_data_anchor->GetIdx() >= static_cast<int>(in_node_output_offsets.size())) {
|
|
GELOGE(FAILED, "Index : %d is out of range.", peer_out_data_anchor->GetIdx());
|
|
return FAILED;
|
|
}
|
|
in_node_output_offsets.at(peer_out_data_anchor->GetIdx()) = mem_offset_reuse;
|
|
peer_op_desc->SetOutputOffset(in_node_output_offsets);
|
|
GELOGI("Set virtual output node %s input data offset to %zu.", op_desc->GetName().c_str(), mem_offset_reuse);
|
|
|
|
// 2. set memory of output tensor
|
|
vector<int64_t> output_list = op_desc->GetOutputOffset();
|
|
if (output_list.empty()) {
|
|
GELOGE(FAILED, "Outputoffset is empty, node name: %s", node->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
if (op_desc->GetOutputsSize() > output_list.size()) {
|
|
GELOGE(FAILED, "The size %zu of op_desc is more than output_list's size %zu.", op_desc->GetOutputsSize(),
|
|
output_list.size());
|
|
return FAILED;
|
|
}
|
|
int64_t attr_dim_index;
|
|
bool get_attr_dim_flag = ge::AttrUtils::GetInt(op_desc, ATTR_NAME_REUSE_INPUT_ON_DIM_INDEX, attr_dim_index);
|
|
if (!get_attr_dim_flag) {
|
|
GELOGE(FAILED, "Get attr _reuse_input_on_dim_index failed.");
|
|
return FAILED;
|
|
}
|
|
|
|
size_t extra_memory_size = 0;
|
|
for (auto &out_data_anchor : node->GetAllOutDataAnchors()) {
|
|
output_list[out_data_anchor->GetIdx()] = mem_offset_reuse;
|
|
size_t pre_mem_offset = mem_offset_reuse;
|
|
|
|
// calculate tensor real size of each piece of data and out size of complete data
|
|
ge::ConstGeTensorDescPtr output_desc = op_desc->GetOutputDescPtr(out_data_anchor->GetIdx());
|
|
GE_CHECK_NOTNULL(output_desc);
|
|
int64_t output_mem_size;
|
|
int64_t batch_dim_num = 1;
|
|
int64_t out_size;
|
|
if (CalculateTensorRealSizeAndOutSize(output_desc, attr_dim_index, output_mem_size, batch_dim_num, out_size) !=
|
|
SUCCESS) {
|
|
GELOGE(FAILED, "CalculateTensorRealSizeAndOutSize failed for node %s output [%d].",
|
|
op_desc->GetName().c_str(), out_data_anchor->GetIdx());
|
|
return FAILED;
|
|
}
|
|
|
|
mem_offset_reuse += output_mem_size;
|
|
extra_memory_size = extra_memory_size + out_size - output_mem_size;
|
|
|
|
GELOGI("[IMAS]Virtual node optimize: set %s name[%s] output[%d] offset to [%zu], size[%ld], real_size[%ld].",
|
|
node->GetOwnerComputeGraph()->GetName().c_str(), op_desc->GetName().c_str(), out_data_anchor->GetIdx(),
|
|
pre_mem_offset, out_size, output_mem_size);
|
|
}
|
|
op_desc->SetOutputOffset(output_list);
|
|
mem_offset_reuse += extra_memory_size;
|
|
size_t after_mem_offset = mem_offset_reuse;
|
|
GELOGI("After reassign virtual output node[name: %s, type: %s] memory, memory offset = %zu.",
|
|
op_desc->GetName().c_str(), op_desc->GetType().c_str(), after_mem_offset);
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::ReAssignReuseAndNoPaddingContinuousOutputMemory() {
|
|
map<string, vector<NodePtr>> mem_reuse_virtual_output_nodes_map;
|
|
for (const auto &n : compute_graph_->GetAllNodes()) {
|
|
OpDescPtr op_desc = n->GetOpDesc();
|
|
GE_CHECK_NOTNULL(op_desc);
|
|
bool attr_continuous = false;
|
|
bool get_continuous_flag = ge::AttrUtils::GetBool(op_desc, ATTR_NAME_NOPADDING_CONTINUOUS_OUTPUT, attr_continuous);
|
|
GE_IF_BOOL_EXEC(!get_continuous_flag, continue);
|
|
bool attr_reuse = false;
|
|
bool get_reuse_flag = ge::AttrUtils::GetBool(op_desc, ATTR_NAME_OUTPUT_REUSE_INPUT, attr_reuse);
|
|
GE_IF_BOOL_EXEC(!get_reuse_flag, continue);
|
|
|
|
if (attr_reuse && attr_continuous) {
|
|
auto in_data_anchor_list = n->GetAllInDataAnchors();
|
|
if (in_data_anchor_list.size() != kVirtualOutputNodeInputSize) {
|
|
// When current virtual node has several inputs, can't directly determine which input is the tensor for reuse.
|
|
GELOGE(FAILED, "Only one input is supported, current virtual node %s has %zu inputs.", n->GetName().c_str(),
|
|
in_data_anchor_list.size());
|
|
return FAILED;
|
|
}
|
|
|
|
GELOGD("Start to reassign memory for virtual output node, memory offset = %zu.", memory_offset_[0].mem_offset_);
|
|
string batch_label_string;
|
|
// Not all ops have ATTR_NAME_BATCH_LABEL, no need to check return value, only check out parameter
|
|
(void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label_string);
|
|
if (batch_label_string.empty()) {
|
|
size_t node_mem_offset = memory_offset_[0].mem_offset_;
|
|
// No ATTR_NAME_BATCH_LABEL, no need to reuse memory.
|
|
Status status = ReAssignVirtualOutputNodeMemory(n, node_mem_offset);
|
|
if (status != SUCCESS) {
|
|
GELOGE(FAILED, "Reassign memory of virtual output node failed, node name: %s.", n->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
memory_offset_[0].mem_offset_ = node_mem_offset;
|
|
AlignMemOffset(MEM_ALIGN_SIZE);
|
|
GELOGD("After reassign memory for virtual output node, align memory = %zu.", memory_offset_[0].mem_offset_);
|
|
} else {
|
|
// Has ATTR_NAME_BATCH_LABEL, for dynamic multi-batch node, need to reuse memory.
|
|
string current_node_full_name = op_desc->GetName();
|
|
size_t pos = current_node_full_name.find(kMbatchNodeNameFlag);
|
|
if (pos == string::npos) {
|
|
GELOGE(FAILED, "Cannot find key string [%s] of multi-batch in name of virtual output node, node name: %s.",
|
|
kMbatchNodeNameFlag, n->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
string fixed_name = current_node_full_name.substr(0, pos);
|
|
vector<NodePtr> parallel_virtual_output_nodes;
|
|
if(mem_reuse_virtual_output_nodes_map.count(fixed_name) != 0) {
|
|
parallel_virtual_output_nodes = mem_reuse_virtual_output_nodes_map[fixed_name];
|
|
}
|
|
parallel_virtual_output_nodes.emplace_back(n);
|
|
mem_reuse_virtual_output_nodes_map[fixed_name] = parallel_virtual_output_nodes;
|
|
}
|
|
}
|
|
}
|
|
|
|
int32_t mem_reuse_model = 1;
|
|
if (ReAssignVirtualNodesMemory(mem_reuse_virtual_output_nodes_map, mem_reuse_model) != SUCCESS) {
|
|
GELOGE(FAILED, "Reassign memory of virtual output nodes failed.");
|
|
return FAILED;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::ReAssignVirtualNodesMemory(map<string, vector<NodePtr>> &mem_reuse_nodes_map,
|
|
int32_t mem_reuse_model) {
|
|
// Find max batch label value
|
|
string max_batch_label;
|
|
if (GetMaxBatchLabel(mem_reuse_nodes_map, mem_reuse_model, max_batch_label) != SUCCESS) {
|
|
GELOGE(FAILED, "Get max batch label failed.");
|
|
return FAILED;
|
|
}
|
|
GELOGI("The batch label of max batch virtual nodes is %s.", max_batch_label.c_str());
|
|
|
|
// Assign memory of max batch nodes that have the same batch label.
|
|
GELOGD("Start to reassign memory for max batch virtual nodes, memory offset = %zu.", memory_offset_[0].mem_offset_);
|
|
vector<size_t> nodes_mem_offset_list;
|
|
for (auto &i_map : mem_reuse_nodes_map) {
|
|
size_t max_batch_node_mem_offset = memory_offset_[0].mem_offset_;
|
|
nodes_mem_offset_list.emplace_back(max_batch_node_mem_offset);
|
|
|
|
vector<NodePtr> virtual_nodes_list = i_map.second;
|
|
for (auto &i_node : virtual_nodes_list) {
|
|
// Op_desc is not nullptr, it has been checked.
|
|
OpDescPtr op_desc = i_node->GetOpDesc();
|
|
string batch_label_string;
|
|
// All ops must have ATTR_NAME_BATCH_LABEL, no need to check return value.
|
|
(void)ge::AttrUtils::GetStr(op_desc, ATTR_NAME_BATCH_LABEL, batch_label_string);
|
|
if (batch_label_string == max_batch_label) {
|
|
Status status = SUCCESS;
|
|
if (mem_reuse_model == kVirtualInputNodeMemoryReuse) {
|
|
status = ReAssignVirtualInputNodeMemory(i_node, max_batch_node_mem_offset);
|
|
} else if (mem_reuse_model == kVirtualOutputNodeMemoryReuse) {
|
|
status = ReAssignVirtualOutputNodeMemory(i_node, max_batch_node_mem_offset);
|
|
} else {
|
|
GELOGE(FAILED, "Invalid parameter memory reuse model, which is: %d.", mem_reuse_model);
|
|
return FAILED;
|
|
}
|
|
|
|
if (status != SUCCESS) {
|
|
GELOGE(FAILED, "Reassign memory of virtual node failed, node name: %s.", i_node->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
memory_offset_[0].mem_offset_ = max_batch_node_mem_offset;
|
|
AlignMemOffset(MEM_ALIGN_SIZE);
|
|
GELOGD("After reassign memory for virtual node, align memory = %zu.", memory_offset_[0].mem_offset_);
|
|
// Only assign memory of max batch nodes.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Assign memory of remaining nodes that have the same fixed_name.
|
|
GELOGD("Start to reassign memory for remaining batch virtual nodes, memory offset = %zu.",
|
|
memory_offset_[0].mem_offset_);
|
|
size_t memory_reuse_index = 0;
|
|
for (auto &i_map : mem_reuse_nodes_map) {
|
|
vector<NodePtr> virtual_nodes_list = i_map.second;
|
|
for (auto &i_node : virtual_nodes_list) {
|
|
size_t remaining_batch_node_mem_offset = nodes_mem_offset_list[memory_reuse_index];
|
|
Status status = SUCCESS;
|
|
if (mem_reuse_model == kVirtualInputNodeMemoryReuse) {
|
|
status = ReAssignVirtualInputNodeMemory(i_node, remaining_batch_node_mem_offset);
|
|
} else if (mem_reuse_model == kVirtualOutputNodeMemoryReuse) {
|
|
status = ReAssignVirtualOutputNodeMemory(i_node, remaining_batch_node_mem_offset);
|
|
} else {
|
|
GELOGE(FAILED, "Invalid parameter memory reuse model, which is: %d.", mem_reuse_model);
|
|
return FAILED;
|
|
}
|
|
|
|
if (status != SUCCESS) {
|
|
GELOGE(FAILED, "Reassign memory of virtual node failed, node name: %s.", i_node->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
}
|
|
memory_reuse_index++;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::ReAssignAtomicMemory(bool is_loop_graph) {
|
|
map<NodePtr, vector<NodePtr>> normal_atomic_and_clean_nodes_map;
|
|
vector<NodePtr> connecting_output_atomic_nodes;
|
|
Status status = FilterAtomicNodesForMemoryAssign(normal_atomic_and_clean_nodes_map, connecting_output_atomic_nodes);
|
|
if (status != SUCCESS) {
|
|
GELOGE(status, "Failed to filter atomic nodes for memory assignment.");
|
|
return status;
|
|
}
|
|
|
|
for (auto &iter : normal_atomic_and_clean_nodes_map) {
|
|
int64_t atomic_mem_start = static_cast<int64_t>(memory_offset_[0].mem_offset_);
|
|
GELOGD("Begin to reAssign atomic memory, atomic address memory start = %ld", atomic_mem_start);
|
|
|
|
for (auto &atomic_node : iter.second) {
|
|
vector<int64_t> mem_offset_end;
|
|
status = AssignAtomicOutputAndWorkspaceMemory(atomic_node, mem_offset_end);
|
|
if (status != SUCCESS) {
|
|
GELOGE(status, "Assign atomic output and workspace memory failed, node name is %s.",
|
|
atomic_node->GetName().c_str());
|
|
return status;
|
|
}
|
|
}
|
|
|
|
int64_t atomic_mem_size = static_cast<int64_t>(memory_offset_[0].mem_offset_) - atomic_mem_start;
|
|
status = SetAtomicCleanAttr(iter.first, {atomic_mem_start}, {atomic_mem_size});
|
|
if (status != SUCCESS) {
|
|
GELOGE(status, "Failed to set attr for atomic addr clean node %s.", iter.first->GetName().c_str());
|
|
return status;
|
|
}
|
|
}
|
|
|
|
if (AssignConnectNetOutputAtomicMemory(connecting_output_atomic_nodes) != SUCCESS) {
|
|
GELOGE(FAILED, "Failed to assign memory of nodes that connect to netoutput.");
|
|
return FAILED;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::FilterAtomicNodesForMemoryAssign(map<NodePtr, vector<NodePtr>> &normal_atomic_nodes_map,
|
|
vector<NodePtr> &connecting_output_atomic_nodes) {
|
|
GE_CHECK_NOTNULL(compute_graph_);
|
|
for (const auto &node : compute_graph_->GetAllNodes()) {
|
|
if (node->GetType() == ATOMICADDRCLEAN) {
|
|
vector<NodePtr> tmp_normal_atomic_nodes;
|
|
const auto &out_control_anchor = node->GetOutControlAnchor();
|
|
GE_CHECK_NOTNULL(out_control_anchor);
|
|
for (const auto &peer_in_control_anchor : out_control_anchor->GetPeerInControlAnchors()) {
|
|
if (peer_in_control_anchor != nullptr) {
|
|
auto peer_in_node = peer_in_control_anchor->GetOwnerNode();
|
|
auto peer_in_node_desc = peer_in_node->GetOpDesc();
|
|
if (peer_in_node_desc != nullptr) {
|
|
bool is_atomic_node = false;
|
|
// If GetBool fail, is_atomic_node is false.
|
|
(void) ge::AttrUtils::GetBool(peer_in_node_desc, ATOMIC_ATTR_IS_ATOMIC_NODE, is_atomic_node);
|
|
if (is_atomic_node) {
|
|
bool is_reference = false;
|
|
// If GetBool fail, is_reference is false.
|
|
(void) ge::AttrUtils::GetBool(peer_in_node_desc, ATTR_NAME_REFERENCE, is_reference);
|
|
if (is_reference) {
|
|
GELOGE(ge::PARAM_INVALID, "The node %s cannot have both atomic and is_reference attribute.",
|
|
peer_in_node_desc->GetName().c_str());
|
|
return ge::PARAM_INVALID;
|
|
}
|
|
|
|
vector<int> is_connecting_output;
|
|
// If GetBool fail, attr is_connecting_output is an empty vector.
|
|
(void) ge::AttrUtils::GetListInt(peer_in_node_desc, ATTR_NAME_NODE_CONNECT_OUTPUT, is_connecting_output);
|
|
if (is_connecting_output.empty()) {
|
|
tmp_normal_atomic_nodes.emplace_back(peer_in_node);
|
|
continue;
|
|
}
|
|
connecting_output_atomic_nodes.emplace_back(peer_in_node);
|
|
tmp_normal_atomic_nodes.clear();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!tmp_normal_atomic_nodes.empty()) {
|
|
normal_atomic_nodes_map[node] = tmp_normal_atomic_nodes;
|
|
}
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::AssignAtomicOutputAndWorkspaceMemory(const ge::NodePtr &node,
|
|
vector<int64_t> &mem_offset_end) {
|
|
auto node_op_desc = node->GetOpDesc();
|
|
// Assign atomic node output memory
|
|
Status ret = AssignAtomicOutputMemory(node, mem_offset_end);
|
|
if (ret != SUCCESS) {
|
|
GELOGE(ret, "Failed to assign atomic output memory, node is %s.", node_op_desc->GetName().c_str());
|
|
return ret;
|
|
}
|
|
|
|
// Check and assign atomic node workspace memory
|
|
map<string, map<int64_t, int64_t>> atomic_workspace_info;
|
|
atomic_workspace_info = node_op_desc->TryGetExtAttr(EXT_ATTR_ATOMIC_WORKSPACE_INFO, atomic_workspace_info);
|
|
if (!atomic_workspace_info.empty()) {
|
|
bool is_fusion_node = false;
|
|
// If GetBool fail, is_fusion_node is false.
|
|
(void)ge::AttrUtils::GetBool(node_op_desc, ATOMIC_ATTR_IS_FUSION_NODE, is_fusion_node);
|
|
|
|
if (is_fusion_node) {
|
|
// Assign fusion atomic node workspace memory
|
|
ret = AssignFusionAtomicWorkspaceMemory(node_op_desc, atomic_workspace_info, mem_offset_end);
|
|
} else {
|
|
// Assign single ordinary atomic node workspace memory, not include fusion node
|
|
ret = AssignOrdinaryAtomicWorkspaceMemory(node_op_desc, atomic_workspace_info, mem_offset_end);
|
|
}
|
|
if (ret != SUCCESS) {
|
|
GELOGE(ret, "Assign atomic workspace memory failed, node is %s.", node_op_desc->GetName().c_str());
|
|
return ret;
|
|
}
|
|
} else {
|
|
GELOGW("Current atomic node %s does not have attr ATOMIC_WORKSPACE_INFO.", node->GetName().c_str());
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::AssignConnectNetOutputAtomicMemory(vector<NodePtr> &connect_netoutput_nodes) {
|
|
for (auto &node : connect_netoutput_nodes) {
|
|
GE_CHECK_NOTNULL(node);
|
|
if (node->GetOpDesc() == nullptr) {
|
|
GELOGW("Current node %s op desc is nullptr, memory assignment is skipped.", node->GetName().c_str());
|
|
continue;
|
|
}
|
|
|
|
// Atomic memory start addr
|
|
int64_t original_atomic_mem_start = static_cast<int64_t>(memory_offset_[0].mem_offset_);
|
|
GELOGD("Start to assign memory of atomic node, node name: %s, node type: %s, mem_offset: %ld.",
|
|
node->GetName().c_str(), node->GetOpDesc()->GetType().c_str(), original_atomic_mem_start);
|
|
vector<int64_t> mem_offset_end;
|
|
if (AssignAtomicOutputAndWorkspaceMemory(node, mem_offset_end) != SUCCESS) {
|
|
GELOGE(FAILED, "Assign atomic output and workspace memory failed, node is %s.", node->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
|
|
// All atomic nodes use atomic_addr_clean op independently, so we need to set the attr separately.
|
|
if (SetIndependentAtomicAttr(node, original_atomic_mem_start, mem_offset_end) != SUCCESS) {
|
|
GELOGE(FAILED, "Failed to set atomic attr separately.");
|
|
return FAILED;
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::AssignReferenceMemory() {
|
|
for (auto &node : compute_graph_->GetDirectNode()) {
|
|
// Get the reference type of the node, default is false
|
|
bool is_ref = false;
|
|
// If GetBool fail, is_ref is false.
|
|
(void)ge::AttrUtils::GetBool(node->GetOpDesc(), ATTR_NAME_REFERENCE, is_ref);
|
|
if (!is_ref) {
|
|
continue;
|
|
}
|
|
|
|
GELOGI("Current node %s needs to support the reference relationship between output and input.",
|
|
node->GetName().c_str());
|
|
|
|
auto out_op_desc = node->GetOpDesc();
|
|
GE_IF_BOOL_EXEC(out_op_desc == nullptr, GELOGE(ge::FAILED, "out_op_desc is null."); return ge::FAILED);
|
|
vector<int64_t> output_list = out_op_desc->GetOutputOffset();
|
|
|
|
if (out_op_desc->GetOutputsSize() > output_list.size()) {
|
|
GELOGE(ge::FAILED, "The size %zu of node output desc is more than output_list's size %zu.",
|
|
out_op_desc->GetOutputsSize(), output_list.size());
|
|
return ge::FAILED;
|
|
}
|
|
|
|
map<string, int> input_name_index;
|
|
for (const auto &input_name : out_op_desc->GetAllInputNames()) {
|
|
int index = out_op_desc->GetInputIndexByName(input_name);
|
|
input_name_index.emplace(input_name, index);
|
|
}
|
|
|
|
for (auto &out_data_anchor : node->GetAllOutDataAnchors()) {
|
|
string out_data_anchor_name = out_op_desc->GetOutputNameByIndex(out_data_anchor->GetIdx());
|
|
auto iter = input_name_index.find(out_data_anchor_name);
|
|
if (iter != input_name_index.end()) {
|
|
int index = iter->second;
|
|
GELOGI("Reference memory: input anchor index = %d, input anchor name = %s, output anchor name = %s.", index,
|
|
iter->first.c_str(), out_data_anchor_name.c_str());
|
|
GE_CHECK_NOTNULL(node->GetInDataAnchor(index));
|
|
auto peer_out_anchor = node->GetInDataAnchor(index)->GetPeerOutAnchor();
|
|
GE_IF_BOOL_EXEC(peer_out_anchor == nullptr, continue);
|
|
int peer_out_anchor_index = peer_out_anchor->GetIdx();
|
|
auto peer_out_node = peer_out_anchor->GetOwnerNode();
|
|
auto peer_out_op_desc = peer_out_node->GetOpDesc();
|
|
GE_CHECK_NOTNULL(peer_out_op_desc);
|
|
output_list[out_data_anchor->GetIdx()] = peer_out_op_desc->GetOutputOffset()[peer_out_anchor_index];
|
|
GELOGI("Reference output : Set %s name[%s] output[%d] offset to [%ld] stream_id[%ld]",
|
|
node->GetOwnerComputeGraph()->GetName().c_str(), peer_out_op_desc->GetName().c_str(),
|
|
out_data_anchor->GetIdx(), output_list[out_data_anchor->GetIdx()], peer_out_op_desc->GetStreamId());
|
|
} else {
|
|
GELOGI("Reference output : origin %s name[%s] output[%d] offset is [%ld] stream_id[%ld]",
|
|
node->GetOwnerComputeGraph()->GetName().c_str(), out_op_desc->GetName().c_str(),
|
|
out_data_anchor->GetIdx(), output_list[out_data_anchor->GetIdx()], out_op_desc->GetStreamId());
|
|
}
|
|
}
|
|
|
|
out_op_desc->SetOutputOffset(output_list);
|
|
}
|
|
|
|
return ge::SUCCESS;
|
|
}
|
|
|
|
bool GraphMemoryAssigner::CheckInputIsSupportAtomic(const ge::NodePtr &node) {
|
|
for (auto &in_data_anchor : node->GetAllInDataAnchors()) {
|
|
auto peer_out_data_anchor = in_data_anchor->GetPeerOutAnchor();
|
|
if (peer_out_data_anchor == nullptr) {
|
|
continue;
|
|
}
|
|
auto peer_op_desc = peer_out_data_anchor->GetOwnerNode()->GetOpDesc();
|
|
if (peer_op_desc == nullptr) {
|
|
continue;
|
|
}
|
|
if ((peer_op_desc->GetType() == CONSTANTOP) || (peer_op_desc->GetType() == AIPP_DATA_TYPE) ||
|
|
(peer_op_desc->GetType() == VARIABLE)) {
|
|
GELOGE(ge::FAILED,
|
|
"The current node is %s, and the peer out node is %s. Currently, this scenario is not supported",
|
|
node->GetName().c_str(), peer_op_desc->GetName().c_str());
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::AssignAtomicOutputMemory(const ge::NodePtr &node, vector<int64_t> &mem_offset_end) {
|
|
auto op_desc = node->GetOpDesc();
|
|
GE_IF_BOOL_EXEC(op_desc == nullptr, GELOGE(ge::FAILED, "op_desc is null."); return ge::FAILED);
|
|
mem_offset_end.clear();
|
|
GELOGD("Begin to assign atomic output memory, node = %s.", op_desc->GetName().c_str());
|
|
|
|
vector<int64_t> atomic_output_index;
|
|
// If GetListInt fail, atomic_output_index is empty.
|
|
(void)ge::AttrUtils::GetListInt(op_desc, ATOMIC_ATTR_OUTPUT_INDEX, atomic_output_index);
|
|
|
|
// Check atomic output
|
|
vector<int64_t> output_list = op_desc->GetOutputOffset();
|
|
if (atomic_output_index.size() > output_list.size()) {
|
|
GELOGE(ge::FAILED, "The size of atomic_output_index is more than the size of output_list");
|
|
return ge::FAILED;
|
|
}
|
|
auto output_list_size = static_cast<int64_t>(output_list.size());
|
|
for (auto &output_index : atomic_output_index) {
|
|
if (output_index >= output_list_size) {
|
|
GELOGE(ge::PARAM_INVALID, "The output index %ld is more than the size %ld of output_list.", output_index,
|
|
output_list_size);
|
|
return ge::PARAM_INVALID;
|
|
}
|
|
|
|
// If the input of the cascade op needs to clear the atomic addr, there is no need to clear it separately here
|
|
bool is_assigned_mem = false;
|
|
if (GetMemoryAssignmentStatus(node, output_index, is_assigned_mem) != SUCCESS) {
|
|
GELOGE(ge::FAILED, "Failed to get memory assignment of node %s.", node->GetName().c_str());
|
|
return ge::FAILED;
|
|
}
|
|
|
|
// If you have already assigned an atomic address, skip it, and you don't need to reassign it.
|
|
if (is_assigned_mem) {
|
|
GELOGI(
|
|
"Node %s atomic output : we have assigned atomic memory as the input of next node in "
|
|
"ReAssignContinuousMemory function.",
|
|
op_desc->GetName().c_str());
|
|
continue;
|
|
}
|
|
|
|
auto output_desc = op_desc->GetAllOutputsDescPtr().at(output_index);
|
|
int64_t size = 0;
|
|
if (ge::TensorUtils::GetSize(*output_desc, size) != SUCCESS) {
|
|
GELOGI("Get size failed");
|
|
}
|
|
|
|
output_list[output_index] = memory_offset_[0].mem_offset_;
|
|
GELOGI("[IMAS]Atomic output : Set %s name[%s] output[%ld] offset to [%zu] stream_id[%ld] size[%ld] real_size[%ld].",
|
|
compute_graph_->GetName().c_str(), op_desc->GetName().c_str(), output_index, memory_offset_[0].mem_offset_,
|
|
op_desc->GetStreamId(), size, size);
|
|
|
|
memory_offset_[0].mem_offset_ += size;
|
|
AlignMemOffset(MEM_ALIGN_SIZE);
|
|
mem_offset_end.emplace_back(memory_offset_[0].mem_offset_);
|
|
}
|
|
|
|
op_desc->SetOutputOffset(output_list);
|
|
|
|
return ge::SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::GetMemoryAssignmentStatus(const ge::NodePtr &node, int64_t output_index,
|
|
bool &is_mem_assigned) {
|
|
if (static_cast<size_t>(output_index) >= node->GetAllOutDataAnchors().size()) {
|
|
GELOGE(ge::PARAM_INVALID, "Output index %ld is more than the size of node's AllOutDataAnchors.", output_index);
|
|
return ge::PARAM_INVALID;
|
|
}
|
|
auto out_data_anchor = node->GetAllOutDataAnchors().at(output_index);
|
|
GE_CHECK_NOTNULL(out_data_anchor);
|
|
auto input_anchors = out_data_anchor->GetPeerInDataAnchors();
|
|
for (auto &input_anchor : input_anchors) {
|
|
auto output_node = input_anchor->GetOwnerNode();
|
|
|
|
/// Get input atomic attr of peer output op, if atomic_input_index[0] = -1, indicates that the atomic address
|
|
/// has been assigned
|
|
vector<int64_t> atomic_input_index;
|
|
(void)ge::AttrUtils::GetListInt(output_node->GetOpDesc(), ATOMIC_ATTR_INPUT_INDEX, atomic_input_index);
|
|
if (!atomic_input_index.empty() && (atomic_input_index[0] == kAllInputAddrIsAtomic)) {
|
|
is_mem_assigned = true;
|
|
break;
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::AssignOrdinaryAtomicWorkspaceMemory(const ge::OpDescPtr &op_desc,
|
|
map<string, map<int64_t, int64_t>> &workspace_info,
|
|
vector<int64_t> &mem_offset_end) {
|
|
GELOGI("Begin to reassign normal atomic memory, node = %s.", op_desc->GetName().c_str());
|
|
vector<int64_t> workspace_vector = op_desc->GetWorkspace();
|
|
|
|
for (auto iter = workspace_info.begin(); iter != workspace_info.end(); ++iter) {
|
|
if (op_desc->GetName() != iter->first) {
|
|
GELOGE(ge::PARAM_INVALID, "The node name %s and the node name %s in workspace info are inconsistent.",
|
|
op_desc->GetName().c_str(), iter->first.c_str());
|
|
return ge::PARAM_INVALID;
|
|
}
|
|
|
|
if (iter->second.empty()) {
|
|
continue;
|
|
}
|
|
|
|
for (auto &info_iter : iter->second) {
|
|
auto workspace_index = static_cast<uint64_t>(info_iter.first);
|
|
auto workspace_size = info_iter.second;
|
|
if (workspace_index >= workspace_vector.size()) {
|
|
GELOGE(ge::PARAM_INVALID, "The workspace index %lu is more than the size %zu of workspace vector.",
|
|
workspace_index, workspace_vector.size());
|
|
return ge::PARAM_INVALID;
|
|
}
|
|
|
|
workspace_vector[workspace_index] = memory_offset_[0].mem_offset_;
|
|
GELOGI(
|
|
"[IMAS]Atomic ordinary workspace : Set %s name[%s] workspace[%lu] offset to [%zu] stream_id[%ld] "
|
|
"size[%ld] real_size[%ld].",
|
|
compute_graph_->GetName().c_str(), op_desc->GetName().c_str(), workspace_index, memory_offset_[0].mem_offset_,
|
|
op_desc->GetStreamId(), workspace_size, workspace_size);
|
|
|
|
memory_offset_[0].mem_offset_ += workspace_size;
|
|
mem_offset_end.emplace_back(memory_offset_[0].mem_offset_);
|
|
}
|
|
}
|
|
op_desc->SetWorkspace(workspace_vector);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::AssignFusionAtomicWorkspaceMemory(const ge::OpDescPtr &op_desc,
|
|
map<string, map<int64_t, int64_t>> &workspace_info,
|
|
vector<int64_t> &mem_offset_end) {
|
|
GELOGI("Begin to reassign fusion atomic memory, node = %s.", op_desc->GetName().c_str());
|
|
map<string, map<int64_t, int64_t>> sub_node_workspace_offset;
|
|
|
|
for (auto &iter : workspace_info) {
|
|
if (iter.second.empty()) {
|
|
continue;
|
|
}
|
|
|
|
map<int64_t, int64_t> index_offset;
|
|
for (auto &info_iter : iter.second) {
|
|
auto workspace_index = static_cast<uint64_t>(info_iter.first);
|
|
auto workspace_size = info_iter.second;
|
|
|
|
size_t workspace_offset = memory_offset_[0].mem_offset_;
|
|
GELOGI(
|
|
"[IMAS]Atomic fusion workspace : Set %s name[%s] workspace[%lu] offset to [%zu] stream_id[%ld] size[%ld] "
|
|
"real_size[%ld].",
|
|
compute_graph_->GetName().c_str(), op_desc->GetName().c_str(), workspace_index, memory_offset_[0].mem_offset_,
|
|
op_desc->GetStreamId(), workspace_size, workspace_size);
|
|
|
|
memory_offset_[0].mem_offset_ += workspace_size;
|
|
mem_offset_end.emplace_back(memory_offset_[0].mem_offset_);
|
|
index_offset.insert(std::make_pair(workspace_index, workspace_offset));
|
|
}
|
|
sub_node_workspace_offset.insert(std::make_pair(iter.first, index_offset));
|
|
}
|
|
if (!(op_desc->SetExtAttr(EXT_ATTR_ATOMIC_WORKSPACE_OFFSET, sub_node_workspace_offset))) {
|
|
GELOGE(FAILED, "Set EXT_ATTR_ATOMIC_WORKSPACE_OFFSET failed, op name:%s.", op_desc->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::CheckOffset() {
|
|
std::map<std::string, std::string> anchor_to_symbol;
|
|
std::map<std::string, std::list<NodeIndexIO>> symbol_to_anchors;
|
|
if (GraphUtils::GetRefMapping(compute_graph_, symbol_to_anchors, anchor_to_symbol) != GRAPH_SUCCESS) {
|
|
GELOGE(FAILED, "Get ref-mapping for graph %s failed.", compute_graph_->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) {
|
|
GE_CHECK_NOTNULL(node->GetOpDesc());
|
|
vector<int64_t> input_list = node->GetOpDesc()->GetInputOffset();
|
|
for (auto input : input_list) {
|
|
if (input == ge::kInvalidOffset) {
|
|
GELOGE(FAILED, "Invalid offset in node: %s input: %ld.", node->GetName().c_str(), ge::kInvalidOffset);
|
|
return FAILED;
|
|
}
|
|
}
|
|
|
|
bool need_update_output = false;
|
|
vector<int64_t> output_list = node->GetOpDesc()->GetOutputOffset();
|
|
for (uint32_t i = 0; i < output_list.size(); ++i) {
|
|
if (output_list[i] == ge::kInvalidOffset) {
|
|
GELOGE(FAILED, "Invalid offset in node: %s output: %ld.", node->GetName().c_str(), ge::kInvalidOffset);
|
|
return FAILED;
|
|
}
|
|
if (node->GetType() == IDENTITY || node->GetType() == READVARIABLEOP) {
|
|
auto symbol_offset = GetSymbolOutputOffset(anchor_to_symbol, symbol_to_anchors, node, i);
|
|
if (symbol_offset != ge::kInvalidOffset && output_list[i] != symbol_offset) {
|
|
output_list[i] = symbol_offset;
|
|
need_update_output = true;
|
|
}
|
|
}
|
|
}
|
|
if (need_update_output) {
|
|
node->GetOpDesc()->SetOutputOffset(output_list);
|
|
}
|
|
|
|
vector<int64_t> workspace_list = node->GetOpDesc()->GetWorkspace();
|
|
for (auto workspace : workspace_list) {
|
|
if (workspace == ge::kInvalidOffset) {
|
|
GELOGE(FAILED, "Invalid offset in node: %s workspace: %ld.", node->GetName().c_str(), ge::kInvalidOffset);
|
|
return FAILED;
|
|
}
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
ge::Status GraphMemoryAssigner::SetInputOffset() {
|
|
if (memory_offset_.empty()) {
|
|
GELOGE(FAILED, "memory_offset_ is empty.");
|
|
return FAILED;
|
|
}
|
|
GEEVENT("[IMAS]AfterAssignMemory : %s memoffset[%zu]", compute_graph_->GetName().c_str(),
|
|
memory_offset_[0].mem_offset_);
|
|
for (const ge::NodePtr &node : compute_graph_->GetAllNodes()) {
|
|
if (UpdateOpInputOffset(node) != ge::SUCCESS) {
|
|
GELOGE(ge::FAILED, "Update op input offset failed");
|
|
return ge::FAILED;
|
|
}
|
|
}
|
|
return ge::SUCCESS;
|
|
}
|
|
|
|
NodePtr GraphMemoryAssigner::GetKnownInputNode(const NodePtr &node) const {
|
|
if (!node->GetOpDesc()->HasAttr(ATTR_NAME_PARENT_NODE_INDEX)) {
|
|
return node;
|
|
}
|
|
|
|
if (NodeUtils::IsDynamicShape(node)) {
|
|
return node;
|
|
}
|
|
|
|
return NodeUtils::GetParentInput(node);
|
|
}
|
|
|
|
ge::Status GraphMemoryAssigner::UpdateConstArgsOffset(const NodePtr &node, vector<int64_t> &input_list) const {
|
|
uint32_t parent_index = 0;
|
|
if (!AttrUtils::GetInt(node->GetOpDesc(), ATTR_NAME_PARENT_NODE_INDEX, parent_index)) {
|
|
return SUCCESS;
|
|
}
|
|
|
|
// Subgraph Data Node, check for constant input.
|
|
std::string op_type;
|
|
const auto &in_node = NodeUtils::GetParentInput(node);
|
|
if (NodeUtils::GetConstOpType(in_node, op_type)) {
|
|
input_list = in_node->GetOpDesc()->GetOutputOffset();
|
|
node->GetOpDesc()->SetOutputOffset(input_list); // Set Data output same as const output.
|
|
return SUCCESS; // Constant input.
|
|
}
|
|
|
|
// Memory allocated for dynamic shape subgraph Data.
|
|
if (NodeUtils::IsDynamicShape(node)) {
|
|
return SUCCESS;
|
|
}
|
|
|
|
const auto &owner = node->GetOwnerComputeGraph();
|
|
const auto &parent_desc = owner->GetParentNode()->GetOpDesc();
|
|
const auto parent_inputs = parent_desc->GetInputOffset();
|
|
if (parent_inputs.size() <= parent_index) {
|
|
GELOGE(FAILED, "Get Parent input offset failed, node: %s, input size: %zu, parent index: %u",
|
|
node->GetName().c_str(), parent_inputs.size(), parent_index);
|
|
return FAILED;
|
|
}
|
|
|
|
input_list = { parent_inputs[parent_index] };
|
|
node->GetOpDesc()->SetOutputOffset(input_list); // Set Data output same as parent input.
|
|
return SUCCESS;
|
|
}
|
|
|
|
ge::Status GraphMemoryAssigner::UpdateOpInputOffset(const NodePtr &node, vector<int64_t> &input_list) const {
|
|
vector<int64_t> origin_input_list;
|
|
vector<int64_t> memory_type;
|
|
auto tmp_op_desc = node->GetOpDesc();
|
|
origin_input_list = tmp_op_desc->GetInputOffset();
|
|
int64_t valid_input_index = 0;
|
|
bool has_mem_type_attr = ge::AttrUtils::GetListInt(tmp_op_desc, ATTR_NAME_INPUT_MEM_TYPE_LIST, memory_type);
|
|
for (const auto &anchor : node->GetAllInDataAnchors()) {
|
|
vector<int64_t> output_list;
|
|
auto peer_out_anchor = anchor->GetPeerOutAnchor();
|
|
if (peer_out_anchor == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
// If the current node not broadcast, the OutputOffset of the previous node is used to update the input_list
|
|
auto last_peer_out_node = peer_out_anchor->GetOwnerNode();
|
|
auto last_peer_out_op_desc = last_peer_out_node->GetOpDesc();
|
|
GE_CHECK_NOTNULL(last_peer_out_op_desc);
|
|
output_list = last_peer_out_op_desc->GetOutputOffset();
|
|
auto out_index = static_cast<unsigned long>(peer_out_anchor->GetIdx());
|
|
if (output_list.size() > static_cast<size_t>(out_index)) {
|
|
int64_t input_offset = output_list.at(out_index);
|
|
if (has_mem_type_attr) {
|
|
auto input_size = tmp_op_desc->GetInputsSize();
|
|
auto ori_input_offset_list_size = origin_input_list.size();
|
|
auto mem_type_size = memory_type.size();
|
|
if ((input_size != mem_type_size) || (input_size != ori_input_offset_list_size)) {
|
|
GELOGE(ge::FAILED,
|
|
"fusion: node[%s] input_size[%zu] diff from memory_type_size[%zu]"
|
|
" from ori_input_offset_list_size[%lu]",
|
|
tmp_op_desc->GetName().c_str(), input_size, mem_type_size, ori_input_offset_list_size);
|
|
return ge::FAILED;
|
|
}
|
|
// not hbm keep orignal inputoffest
|
|
// hbm inputoffset = original inputoffset + outputoffset
|
|
input_offset = (memory_type[valid_input_index] == RT_MEMORY_L1 ? origin_input_list[valid_input_index]
|
|
: origin_input_list[valid_input_index] + output_list.at(out_index));
|
|
}
|
|
const auto &in_node = GetKnownInputNode(peer_out_anchor->GetOwnerNode());
|
|
if (in_node->GetType() == CONSTANT) {
|
|
GeTensorDesc tensor_desc = tmp_op_desc->GetInputDesc(static_cast<uint32_t>(anchor->GetIdx()));
|
|
GE_CHK_STATUS(TensorUtils::GetDataOffset(tensor_desc, input_offset));
|
|
}
|
|
|
|
GELOGI("%s node[%s] input[%d] is set from node[%s] out index[%lu] offset[%ld]",
|
|
has_mem_type_attr == true ? "Fusion" : "",
|
|
tmp_op_desc->GetName().c_str(),
|
|
valid_input_index,
|
|
peer_out_anchor->GetOwnerNode()->GetOpDesc()->GetName().c_str(),
|
|
out_index,
|
|
input_offset);
|
|
input_list.emplace_back(input_offset);
|
|
valid_input_index++;
|
|
}
|
|
}
|
|
return ge::SUCCESS;
|
|
}
|
|
|
|
ge::Status GraphMemoryAssigner::UpdateOpInputOffset(const NodePtr &node) const {
|
|
GE_CHECK_NOTNULL(node->GetOpDesc());
|
|
vector<int64_t> input_list;
|
|
if (node->GetType() == HCOMBROADCAST || node->GetType() == HVDCALLBACKBROADCAST) {
|
|
for (const auto &anchor : node->GetAllInDataAnchors()) {
|
|
vector<int64_t> output_list;
|
|
auto peer_out_anchor = anchor->GetPeerOutAnchor();
|
|
if (peer_out_anchor == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
auto last_peer_out_node = peer_out_anchor->GetOwnerNode();
|
|
// If the current node is broadcast and the preceding node is variable, because InputOffset has been set
|
|
// in function:AssignVarAttr2Nodes, then the InputOffset of the broadcast node is taken to update the input_list.
|
|
// Otherwise, the OutputOffset of the previous node is used to update the input_list.
|
|
if (last_peer_out_node->GetType() != VARIABLE) {
|
|
auto last_peer_out_op_desc = last_peer_out_node->GetOpDesc();
|
|
GE_CHECK_NOTNULL(last_peer_out_op_desc);
|
|
output_list = last_peer_out_op_desc->GetOutputOffset();
|
|
if (output_list.size() > static_cast<size_t>(peer_out_anchor->GetIdx())) {
|
|
input_list.emplace_back(output_list.at(peer_out_anchor->GetIdx()));
|
|
}
|
|
} else {
|
|
vector<int64_t> cur_node_input_list;
|
|
auto cur_node_op_desc = node->GetOpDesc();
|
|
GE_CHECK_NOTNULL(cur_node_op_desc);
|
|
cur_node_input_list = cur_node_op_desc->GetInputOffset();
|
|
if (cur_node_input_list.size() > static_cast<size_t>(anchor->GetIdx())) {
|
|
input_list.emplace_back(cur_node_input_list.at(anchor->GetIdx()));
|
|
}
|
|
}
|
|
}
|
|
} else if (node->GetType() == DATA_TYPE) {
|
|
if (UpdateConstArgsOffset(node, input_list) != SUCCESS) {
|
|
GELOGE(FAILED, "Update data: %s args offset failed.", node->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
} else {
|
|
if (UpdateOpInputOffset(node, input_list) != SUCCESS) {
|
|
GELOGE(FAILED, "Update node: %s input offset failed.", node->GetName().c_str());
|
|
return FAILED;
|
|
}
|
|
}
|
|
|
|
node->GetOpDesc()->SetInputOffset(input_list);
|
|
return SUCCESS;
|
|
}
|
|
|
|
Status GraphMemoryAssigner::SetIndependentAtomicAttr(const ge::NodePtr &node, int64_t atomic_mem_start,
|
|
const vector<int64_t> &mem_offset_end) {
|
|
GELOGD("Start to set independent atomic attr, atomic_addr_clean memory offset start is %ld", atomic_mem_start);
|
|
|
|
// Parsing offset and size vectors
|
|
vector<int64_t> memory_offset_start;
|
|
vector<int64_t> memory_offset_size;
|
|
memory_offset_start.emplace_back(atomic_mem_start);
|
|
for (size_t i = 0; i < mem_offset_end.size(); ++i) {
|
|
memory_offset_start.emplace_back(mem_offset_end[i]);
|
|
// Number 1 means element index
|
|
auto size = memory_offset_start[i + 1] - memory_offset_start[i];
|
|
memory_offset_size.emplace_back(size);
|
|
}
|
|
memory_offset_start.pop_back();
|
|
|
|
const auto &in_control_anchor = node->GetInControlAnchor();
|
|
if (!memory_offset_size.empty() && in_control_anchor != nullptr) {
|
|
for (auto &peer_out_control_anchor : in_control_anchor->GetPeerOutControlAnchors()) {
|
|
if (peer_out_control_anchor == nullptr) {
|
|
continue;
|
|
}
|
|
auto peer_out_node = peer_out_control_anchor->GetOwnerNode();
|
|
auto peer_out_node_desc = peer_out_node->GetOpDesc();
|
|
if (peer_out_node_desc == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
GELOGD("Current node memory_offset vector size is %zu, node name %s, node type is %s.", memory_offset_size.size(),
|
|
peer_out_node_desc->GetName().c_str(), peer_out_node_desc->GetType().c_str());
|
|
if (peer_out_node_desc->GetType() == ATOMICADDRCLEAN) {
|
|
if (SetAtomicCleanAttr(peer_out_node, memory_offset_start, memory_offset_size) != SUCCESS) {
|
|
GELOGE(FAILED, "Set atomic clean attr failed.");
|
|
return FAILED;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
ge::Status GraphMemoryAssigner::SetAtomicCleanAttr(const NodePtr &node, const vector<int64_t> &atomic_mem_start,
|
|
const vector<int64_t> &atomic_mem_size) {
|
|
auto node_op_desc = node->GetOpDesc();
|
|
if (node_op_desc != nullptr) {
|
|
GELOGD("Node %s, set atomic clean attr start.", node->GetName().c_str());
|
|
vector<int64_t> workspace_vector = node_op_desc->GetWorkspace();
|
|
vector<int64_t> workspace_byte_vector = node_op_desc->GetWorkspaceBytes();
|
|
workspace_vector.insert(workspace_vector.end(), atomic_mem_start.begin(), atomic_mem_start.end());
|
|
workspace_byte_vector.insert(workspace_byte_vector.end(), atomic_mem_size.begin(), atomic_mem_size.end());
|
|
node_op_desc->SetWorkspace(workspace_vector);
|
|
node_op_desc->SetWorkspaceBytes(workspace_byte_vector);
|
|
|
|
std::vector<int64_t> mem_start_vector;
|
|
// If GetListInt fail, mem_start_vector is empty.
|
|
(void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector);
|
|
mem_start_vector.insert(mem_start_vector.end(), atomic_mem_start.begin(), atomic_mem_start.end());
|
|
GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_START, mem_start_vector),
|
|
GELOGE(FAILED, "SetListInt failed.");
|
|
return FAILED);
|
|
|
|
std::vector<int64_t> mem_size_vector;
|
|
// If GetListInt fail, mem_size_vector is empty.
|
|
(void) ge::AttrUtils::GetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector);
|
|
mem_size_vector.insert(mem_size_vector.end(), atomic_mem_size.begin(), atomic_mem_size.end());
|
|
GE_CHK_BOOL_EXEC(ge::AttrUtils::SetListInt(node_op_desc, ATTR_NAME_AUTOMIC_ADD_MEM_SIZE, mem_size_vector),
|
|
GELOGE(FAILED, "SetListInt failed.");
|
|
return FAILED);
|
|
|
|
std::stringstream ss;
|
|
for (auto iter : atomic_mem_start) {
|
|
ss << iter << " ";
|
|
}
|
|
string atomic_mem_start_str = ss.str();
|
|
ss.clear();
|
|
ss.str("");
|
|
for (auto iter : atomic_mem_size) {
|
|
ss << iter << " ";
|
|
}
|
|
string atomic_mem_size_str = ss.str();
|
|
|
|
GELOGI("[IMAS]SetAtomicCleanAttr : Set graph[%s] atomic_node[%s] output offset [%s] size[%s] streamid[%ld]",
|
|
node->GetOwnerComputeGraph()->GetName().c_str(), node_op_desc->GetName().c_str(),
|
|
atomic_mem_start_str.c_str(), atomic_mem_size_str.c_str(), node->GetOpDesc()->GetStreamId());
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
void GraphMemoryAssigner::AlignMemOffset(const int64_t &mem_align_size) {
|
|
if (mem_align_size <= 0) {
|
|
return;
|
|
}
|
|
memory_offset_[0].mem_offset_ =
|
|
(memory_offset_[0].mem_offset_ + mem_align_size - 1) / mem_align_size * mem_align_size;
|
|
}
|
|
} // namespace ge
|