You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
3.4 KiB
101 lines
3.4 KiB
/**
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef GE_OP_LINALG_OPS_H_
|
|
#define GE_OP_LINALG_OPS_H_
|
|
|
|
#include "graph/operator_reg.h"
|
|
#include "../graph/operator.h"
|
|
|
|
namespace ge {
|
|
|
|
REG_OP(CholeskyGrad)
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.INPUT(grad, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OP_END_FACTORY_REG(CholeskyGrad)
|
|
|
|
REG_OP(Cholesky)
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OP_END_FACTORY_REG(Cholesky)
|
|
|
|
REG_OP(LogMatrixDeterminant)
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OUTPUT(sign, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OP_END_FACTORY_REG(LogMatrixDeterminant)
|
|
|
|
REG_OP(MatrixDeterminant)
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OP_END_FACTORY_REG(MatrixDeterminant)
|
|
|
|
REG_OP(MatrixInverse)
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.ATTR(adjoint, Bool, false)
|
|
.OP_END_FACTORY_REG(MatrixInverse)
|
|
|
|
REG_OP(MatrixSolve)
|
|
.INPUT(matrix, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.INPUT(rhs, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.ATTR(adjoint, Bool, false)
|
|
.OP_END_FACTORY_REG(MatrixSolve)
|
|
|
|
REG_OP(MatrixSolveLs)
|
|
.INPUT(matrix, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.INPUT(rhs, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.INPUT(l2, TensorType({DT_DOUBLE}))
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.ATTR(fast, Bool, true)
|
|
.OP_END_FACTORY_REG(MatrixSolveLs)
|
|
|
|
REG_OP(MatrixTriangularSolve)
|
|
.INPUT(matrix, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.INPUT(rhs, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_DOUBLE}))
|
|
.ATTR(lower, Bool, true)
|
|
.ATTR(adjoint, Bool, false)
|
|
.OP_END_FACTORY_REG(MatrixTriangularSolve)
|
|
|
|
REG_OP(Qr)
|
|
.INPUT(x, TensorType({ DT_FLOAT16, DT_FLOAT, DT_DOUBLE }))
|
|
.OUTPUT(q, TensorType({ DT_FLOAT16, DT_FLOAT, DT_DOUBLE }))
|
|
.OUTPUT(r, TensorType({ DT_FLOAT16, DT_FLOAT, DT_DOUBLE }))
|
|
.ATTR(full_matrices, Bool, false)
|
|
.OP_END_FACTORY_REG(Qr)
|
|
|
|
REG_OP(SelfAdjointEig)
|
|
.INPUT(x, TensorType({ DT_DOUBLE, DT_FLOAT }))
|
|
.OUTPUT(eigen_value, TensorType({ DT_DOUBLE, DT_FLOAT }))
|
|
.OUTPUT(eigen_vector, TensorType({ DT_DOUBLE, DT_FLOAT }))
|
|
.ATTR(compute_v, Bool, true)
|
|
.OP_END_FACTORY_REG(SelfAdjointEig)
|
|
|
|
REG_OP(Svd)
|
|
.INPUT(x, TensorType({ DT_DOUBLE, DT_FLOAT }))
|
|
.OUTPUT(sigma, TensorType({ DT_DOUBLE, DT_FLOAT }))
|
|
.OUTPUT(u, TensorType({ DT_DOUBLE, DT_FLOAT }))
|
|
.OUTPUT(v, TensorType({ DT_DOUBLE, DT_FLOAT }))
|
|
.ATTR(compute_uv, Bool, true)
|
|
.ATTR(full_matrices, Bool, false)
|
|
.OP_END_FACTORY_REG(Svd)
|
|
} // namespace ge
|
|
|
|
#endif // GE_OP_LINALG_OPS_H_
|