You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/third_party/fwkacllib/inc/ops/quantize_ops.h

92 lines
3.2 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef GE_OP_QUANTIZE_OPS_H
#define GE_OP_QUANTIZE_OPS_H
#include "../graph/operator_reg.h"
namespace ge {
REG_OP(QuantizedInnerProduct)
.INPUT(x, TensorType({DT_UINT8}))
.INPUT(w, TensorType({DT_INT8}))
.OPTIONAL_INPUT(b, TensorType({DT_INT32}))
.OPTIONAL_INPUT(scale_q, TensorType({DT_FLOAT16}))
.OPTIONAL_INPUT(offset_q, TensorType({DT_FLOAT16}))
.OPTIONAL_INPUT(scale_deq_req, TensorType({DT_FLOAT16}))
.OPTIONAL_INPUT(offset_req, TensorType({DT_FLOAT16}))
.OUTPUT(y, TensorType({DT_FLOAT16}))
.REQUIRED_ATTR(quant_algo, ListInt)
.REQUIRED_ATTR(scale_sqrt, ListInt)
.REQUIRED_ATTR(num_output, Int)
.ATTR(transpose, Bool, false)
.ATTR(bias_term, Bool, false)
.ATTR(axis, Int, 1)
.OP_END_FACTORY_REG(QuantizedInnerProduct)
/**
* @brief Dequantizes the input tensor into a float tensor.\n
* [input_min_range, input_max_range] are scalar floats that specify the range
* for "output_data".
* The "mode" attribute controls exactly which calculations are used to convert\n
* the float values to their quantized equivalents.
* @par Inputs:
* @li input_data: A Tensor. Must be one of the following types: int8, uint8,
* int32.
* @li input_min_range: A Tensor of type float32.
* Specifies the minimum scalar value possibly produced for the input.
* @li input_max_range: A Tensor of type float32.
* Specifies the maximum scalar value possibly produced for the input.
* @par Attributes:
* mode: An optional string from: "MIN_COMBINED", "MIN_FIRST", and "SCALED".
* Defaults to "MIN_COMBINED".
* @par Outputs:
* output_data: A dictionary of type float32.
* @attention Constraints:
* @li "input_min_range" and "input_max_range" have the same shapes.
* @li "input_data" and "output_data" have the same shapes.
*/
REG_OP(Dequantize)
.INPUT(x, TensorType(DT_QINT8, DT_QUINT8, DT_QINT32, DT_QINT16, DT_QUINT16))
.INPUT(min_range, TensorType{DT_FLOAT})
.INPUT(max_range, TensorType{DT_FLOAT})
.OUTPUT(y, TensorType({DT_FLOAT}))
.ATTR(mode, String, "MIN_COMBINED")
.OP_END_FACTORY_REG(Dequantize)
REG_OP(AscendQuant)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT32}))
.OUTPUT(y, TensorType({DT_INT8}))
.REQUIRED_ATTR(scale, Float)
.REQUIRED_ATTR(sqrt_mode, Bool)
.REQUIRED_ATTR(offset, Float)
.ATTR(round_mode, String, "Round")
.OP_END_FACTORY_REG(AscendQuant)
REG_OP(AscendDequant)
.INPUT(x, TensorType({DT_INT32}))
.INPUT(deq_scale, TensorType({DT_FLOAT16, DT_UINT64}))
.OUTPUT(y, TensorType({DT_FLOAT16}))
.REQUIRED_ATTR(sqrt_mode, Bool)
.REQUIRED_ATTR(relu_flag, Bool)
.OP_END_FACTORY_REG(AscendDequant)
} // namespace ge
#endif // GE_OP_QUANTIZE_OPS_H