You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/third_party/fwkacllib/inc/ops/ragged_array_ops.h

65 lines
2.4 KiB

/**
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*!
* \file ragged_array_ops.h
* \brief
*/
#ifndef OPS_BUILT_IN_OP_PROTO_INC_RAGGED_ARRAY_OPS_H_
#define OPS_BUILT_IN_OP_PROTO_INC_RAGGED_ARRAY_OPS_H_
#include "graph/operator.h"
#include "graph/operator_reg.h"
namespace ge {
/**
*@brief Gather ragged slices from `params` axis `0` according to `indices` . \n
*@par Inputs:
*@li params_nested_splits: The `nested_row_splits` tensors that define the row-partitioning for the
*params` RaggedTensor input. It's a dynamic input.
*@li params_dense_values: The `flat_values` for the `params` RaggedTensor. There was a terminology change
*at the python level from dense_values to flat_values, so dense_values is the
*deprecated name.
*@li indices: Indices in the outermost dimension of `params` of the values that should be
*gathered.
*@li OUTPUT_RAGGED_RANK: The ragged rank of the output RaggedTensor. `output_nested_splits` will contain
*this number of `row_splits` tensors. This value should equal
*`indices.shape.ndims + params.ragged_rank - 1` . \n
*@par Outputs:
*y:A Returns The `nested_row_splits` tensors that define the row-partitioning for the
*returned RaggedTensor.The `flat_values` for the returned RaggedTensor . \n
*@par Third-party framework compatibility
* Compatible with tensorflow RaggedGather operator.
*/
REG_OP(RaggedGather)
.DYNAMIC_INPUT(params_nested_splits, TensorType({DT_INT32, DT_INT64}))
.INPUT(params_dense_values, TensorType({DT_INT32, DT_INT64}))
.INPUT(indices, TensorType({DT_INT32, DT_INT64}))
.DYNAMIC_OUTPUT(output_nested_splits, TensorType({DT_INT32, DT_INT64}))
.OUTPUT(output_dense_values, TensorType({DT_INT32, DT_INT64}))
.REQUIRED_ATTR(Tsplits, Type)
.ATTR(PARAMS_RAGGED_RANK, Int, 1)
.ATTR(OUTPUT_RAGGED_RANK, Int, 0)
.OP_END_FACTORY_REG(RaggedGather)
} // namespace ge
#endif // OPS_BUILT_IN_OP_PROTO_INC_RAGGED_ARRAY_OPS_H_