|
|
/**
|
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
|
*
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
* You may obtain a copy of the License at
|
|
|
*
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
*
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
* See the License for the specific language governing permissions and
|
|
|
* limitations under the License.
|
|
|
*/
|
|
|
|
|
|
/*!
|
|
|
*\file max_pool_v3_grad.h
|
|
|
*\brief
|
|
|
*/
|
|
|
#ifndef OPS_BUILT_IN_OP_PROTO_INC_MAX_POOL_V3_GRAD_H_
|
|
|
#define OPS_BUILT_IN_OP_PROTO_INC_MAX_POOL_V3_GRAD_H_
|
|
|
|
|
|
#include "graph/operator_reg.h"
|
|
|
|
|
|
namespace ge {
|
|
|
|
|
|
/**
|
|
|
* @brief Computes gradients of the maxpooling function . \n
|
|
|
|
|
|
* @par Inputs:
|
|
|
* @li orig_input: A mutable NC1HWC0 tensor of type RealNumberType.
|
|
|
* @li orig_output: A mutable NC1HWC0 tensor of type RealNumberTypex.
|
|
|
* @li grad: A mutable NC1HWC0 tensor of type RealNumberType . \n
|
|
|
|
|
|
* @par Attributes:
|
|
|
* @li ksize: A required list of int8, int16, int32, or int64 values,
|
|
|
* specifying the size of the window for each dimension of the input tensor.
|
|
|
* No default value.
|
|
|
* @li strides: A required list of int8, int16, int32, or int64 values,
|
|
|
* specifying the stride of the sliding window for each dimension of
|
|
|
* the input tensor. No default value.
|
|
|
* @li padding_mode: A required string. Defaults to "CALCULATED".
|
|
|
* @li pads:A required list of int8, int16, int32, or int64 values,
|
|
|
* a data to caculate when padding_mode is "SAME" and "CALCULATED".
|
|
|
* @li data_format: An optional string. Defaults to "NHWC" .
|
|
|
* @li global_pooling bool, Whether to use the global pooling.
|
|
|
* If global_pooling = true, kernel size and paddings will be ignored.
|
|
|
* Default False
|
|
|
* @li ceil_mode:global_pooling (bool) – (bool) Whether to use the global pooling.
|
|
|
* If global_pooling = true, kernel size and paddings will be ignored.
|
|
|
* Default False \n
|
|
|
|
|
|
* @par Outputs:
|
|
|
* y: A mutable tensor. Has the same shape and type as "x1" . \n
|
|
|
|
|
|
* @attention Constraints:
|
|
|
* @li Computing gradients of global pooling is not supported, which means
|
|
|
* "ksize < x1".
|
|
|
* @li "ksize" is in the range [1, 255]. "strides" is in the range [1, 63]
|
|
|
|
|
|
* @par Third-party framework compatibility
|
|
|
* Compatible with the TensorFlow operator MaxPoolGrad.
|
|
|
*/
|
|
|
REG_OP(MaxPoolV3Grad)
|
|
|
.INPUT(orig_input, TensorType::RealNumberType())
|
|
|
.INPUT(orig_output, TensorType::RealNumberType())
|
|
|
.INPUT(grad, TensorType::RealNumberType())
|
|
|
.OUTPUT(out_grad, TensorType::RealNumberType())
|
|
|
.REQUIRED_ATTR(ksize, ListInt)
|
|
|
.REQUIRED_ATTR(strides, ListInt)
|
|
|
.ATTR(padding_mod, String, "CALCULATED")
|
|
|
.ATTR(pads, ListInt, {0, 0, 0, 0})
|
|
|
.ATTR(data_format, String, "NCHW")
|
|
|
.ATTR(global_pooling, Bool, false)
|
|
|
.ATTR(ceil_mode, Bool, false)
|
|
|
.OP_END_FACTORY_REG(MaxPoolV3Grad)
|
|
|
} // namespace ge
|
|
|
|
|
|
#endif // OPS_BUILT_IN_OP_PROTO_INC_MAX_POOL_V3_GRAD_H_
|