You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/third_party/fwkacllib/inc/ops/rnn.h

966 lines
52 KiB

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*!
* \file rnn.h
* \brief
*/
#ifndef OPS_BUILT_IN_OP_PROTO_INC_RNN_H_
#define OPS_BUILT_IN_OP_PROTO_INC_RNN_H_
#include "graph/operator_reg.h"
namespace ge {
/**
*@brief: Basic LSTM Cell forward calculation.
*@par Inputs:
*five inputs:
*@li x:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li h:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li w:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li b:A 1D Tensor. Must be one of the following types: float16. The format must be ND . \n
*@par Attributes:
*@li keep_prob:An integer identifying the keep prob in the op. Default to 1.
*@li forget_bias:An integer identifying the forget bias in the op. Default to 1.
*@li state_is_tuple:An bool identifying if the hidden state and cell state is tuple. Default to true.
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported . \n
*@par Outputs:
*seven outputs:
*@li mask:A 1D Tensor. Must be one of the following types: uint8.
*@li ct:A 4D Tensor. Must be one of the following types: float16, float32.
*@li ht:A 4D Tensor. Must be one of the following types: float16.
*@li it:A 4D Tensor. Must be one of the following types: float16, float32.
*@li jt:A 4D Tensor. Must be one of the following types: float16, float32.
*@li ft:A 4D Tensor. Must be one of the following types: float16, float32.
*@li ot:A 4D Tensor. Must be one of the following types: float16, float32.
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32.
*/
REG_OP(BasicLSTMCell)
.INPUT(x, TensorType({DT_FLOAT16}))
.INPUT(h, TensorType({DT_FLOAT16}))
.INPUT(c, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(w, TensorType({DT_FLOAT16}))
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(mask, TensorType({DT_UINT8}))
.OUTPUT(ct, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(ht, TensorType({DT_FLOAT16}))
.OUTPUT(it, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(jt, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(ft, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(ot, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(tanhct, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(keep_prob, Float, 1.0)
.ATTR(forget_bias, Float, 1.0)
.ATTR(state_is_tuple, Bool, true)
.ATTR(activation, String, "tanh")
.OP_END_FACTORY_REG(BasicLSTMCell)
/**
*@brief: Dynamic LSTM forward calculation . \n
*@par Inputs:
*@li x:A 4D Tensor. Must be the type float32. The format must be FRACTAL_NZ.
*@li w:A 4D Tensor. Must be the type float32. The format must be FRACTAL_Z.
*@li b:A 1D Tensor. Must be the type float32. The format must be ND . \n
*@par Outputs:
*output_h:A Tensor of output. Must be the type float32. The format must be FRACTAL_Z.
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(DynamicLSTM)
.INPUT(x, TensorType({DT_FLOAT32}))
.INPUT(w, TensorType({DT_FLOAT32}))
.INPUT(b, TensorType({DT_FLOAT32}))
.OUTPUT(output_h, TensorType({DT_FLOAT32}))
.OP_END_FACTORY_REG(DynamicLSTM)
/**
*@brief: DynamicRNNGrad calculation.
*@par Inputs:
*ten inputs: \n
*@li x:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li w:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li b:A 1D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li y:A 1D Tensor. Must be one of the following types: int32. The format must be FRACTAL_NZ.
*@li init_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li init_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dy:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dh:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dc:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li i:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li j:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li seq_length:A 1D Tensor. Must be one of the following types: int32.
*@li mask:A 1D Tensor. Must be one of the following types: int8.
*@li wci:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li wcf:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li wco:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Attributes:
*@li cell_type:An string identifying the cell type in the op. Default to "LSTM". Only LSTM is currently supported.
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported.
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1.
*@li use_peephole:An bool identifying if use peephole in the op. Default to false.
*@li keep_prob:An float identifying the keep prob in the op. Default to 1.
*@li cell_clip:An float identifying the cell clip in the op. Default to -1.
*@li num_proj:An integer identifying the num projection in the op. Default to 0.
*@li time_major:An bool identifying the time major in the op. Default to false.
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported.
*@li forget_bias:An float identifying the forget bias in the op. Default to 0.
*@li is_training:An bool identifying is training in the op. Default to true.
*@par Outputs:
*eight outputs: \n
*@li dw:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li db:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dx:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dh_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dc_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dwci:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dwcf:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dwco:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*/
REG_OP(DynamicRNNGrad)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(h, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(c, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dy, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dh, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dc, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(i, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(j, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(f, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(o, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(tanhct, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32}))
.OPTIONAL_INPUT(mask, TensorType({DT_UINT8}))
.OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(wcf, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(wco, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dw, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(db, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dx, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dh_prev, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dc_prev, TensorType({DT_FLOAT16, DT_FLOAT}))
.DYNAMIC_OUTPUT(dwci, TensorType({DT_FLOAT16, DT_FLOAT}))
.DYNAMIC_OUTPUT(dwcf, TensorType({DT_FLOAT16, DT_FLOAT}))
.DYNAMIC_OUTPUT(dwco, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(cell_type, String, "LSTM")
.ATTR(direction, String, "UNIDIRECTIONAL")
.ATTR(cell_depth, Int, 0)
.ATTR(use_peephole, Bool, false)
.ATTR(keep_prob, Float, -1.0)
.ATTR(cell_clip, Float, -1.0)
.ATTR(num_proj, Int, 0)
.ATTR(time_major, Bool, true)
.ATTR(forget_bias, Float, 0.0)
.OP_END_FACTORY_REG(DynamicRNNGrad)
/**
*@brief: DynamicRNN calculation.
*@par Inputs:
*ten inputs:
*@li x:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li w:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
*@li b:A required 1D Tensor. Must be one of the following types: float16, float32. The format must be ND.
*@li seq_length:A optional 1D Tensor. Must be one of the following types: int32. The format must be ND.
*@li init_h:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li init_c:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li wci:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
*@li wcf:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
*@li wco:A 4D optional Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
*@li mask:A 1D optional Tensor. Must be one of the following types: uint8. The format must be ND . \n
*@par Attributes:
*@li cell_type:An string identifying the cell type in the op. Default to "LSTM". Only LSTM is currently supported.
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported.
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1.
*@li use_peephole:An bool identifying if use peephole in the op. Default to false.
*@li keep_prob:An float identifying the keep prob in the op. Default to 1.
*@li cell_clip:An float identifying the cell clip in the op. Default to -1.
*@li num_proj:An integer identifying the num projection in the op. Default to 0.
*@li time_major:An bool identifying the time major in the op. Default to true.
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported.
*@li forget_bias:An float identifying the forget bias in the op. Default to 0.
*@li is_training:An bool identifying is training in the op. Default to true . \n
*@par Outputs:
*eight outputs:
*@li y:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li output_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li output_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li i:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li j:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Third-party framework compatibility:
* Compatible with the TF operator LSTM.
*/
REG_OP(DynamicRNN)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32}))
.OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(wcf, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(wco, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(mask, TensorType({DT_UINT8}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(output_c, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(i, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(j, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(f, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(o, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(tanhc, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(cell_type, String, "LSTM")
.ATTR(direction, String, "UNIDIRECTIONAL")
.ATTR(cell_depth, Int, 1)
.ATTR(use_peephole, Bool, false)
.ATTR(keep_prob, Float, 1.0)
.ATTR(cell_clip, Float, -1.0)
.ATTR(num_proj, Int, 0)
.ATTR(time_major, Bool, true)
.ATTR(activation, String, "tanh")
.ATTR(forget_bias, Float, 0.0)
.ATTR(is_training, Bool, true)
.OP_END_FACTORY_REG(DynamicRNN)
/**
*@brief: DynamicLSTMV2 calculation.
*@par Inputs:
*ten inputs:
*@li x:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li w:A required 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
*@li b:A required 1D Tensor. Must be one of the following types: float16, float32. The format must be ND.
*@li cont:A required 2D Tensor. Must be one of the following types: float16, float32. The format must be ND.
*@li w_xc_x_static:A optional 2D Tensor. Must be one of the following types: float16, float32. The format must be ND.
*@li h0:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li c0:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li wci:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
*@li wcf:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
*@li wco:A optional 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
*@li mask:A optional 1D Tensor. Must be one of the following types: uint8. The format must be ND .
*@par Attributes:
*@li num_output:An integer identifying the num projection in the op. Default to 0.
*@li expose_hidden:An bool identifying the expose_hidden in the op. Default to flase.
*@li need_output_last:An bool identifying the time major in the op. Default to true.
*@li forget_bias:An float identifying the forget bias in the op. Default to 0.
*@par Outputs:
*eight outputs:
*@li y:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li output_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li output_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li last_output_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li last_output_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Third-party framework compatibility:
* Compatible with the Caffe operator LSTM.
*@par Restrictions:
* Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(DynamicLSTMV2)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(cont, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(w_xc_x_static, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(h0, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(c0, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(wcf, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(wco, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(mask, TensorType({DT_UINT8}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(output_c, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(last_output_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(last_output_c, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(num_output, Int, 0)
.ATTR(expose_hidden, Bool, false)
.ATTR(need_output_last, Bool, false)
.ATTR(forget_bias, Float, 0.0)
.OP_END_FACTORY_REG(DynamicLSTMV2)
/**
*@brief: LSTMInputGrad calculation.
*@par Inputs:
*ten inputs: \n
*@li w:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li init_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dy:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dh:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dc:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li i:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li j:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Outputs:
*eight outputs: \n
*@li dx:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dh_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dc_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*/
REG_OP(LSTMInputGrad)
.INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(c, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dy, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dh, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dc, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(i, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(j, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(f, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(o, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(tanhct, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dx, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dh_prev, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dc_prev, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dgate, TensorType({DT_FLOAT16}))
.OP_END_FACTORY_REG(LSTMInputGrad)
/**
*@brief: Basic LSTM Cell backward calculation.Calculate the gradient of input and hidden state.
*@par Inputs:
*three inputs:
*@li dgate:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li w:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li dropout_mask:A 1D Tensor. Must be one of the following types: uint8. The format must be ND . \n
*@par Attributes:
*keep_prob:An integer identifying the keep prob in the op. Default to 1 . \n
*@par Outputs:
*two outputs:
*@li dxt:A 4D Tensor. Must be one of the following types: float16, float32.
*@li dht:A 4D Tensor. Must be one of the following types: float16, float32.
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(BasicLSTMCellInputGrad)
.INPUT(dgate, TensorType({DT_FLOAT16}))
.INPUT(w, TensorType({DT_FLOAT16}))
.OPTIONAL_INPUT(dropout_mask, TensorType({DT_UINT8}))
.OUTPUT(dxt, TensorType({DT_FLOAT16, DT_FLOAT32}))
.OUTPUT(dht, TensorType({DT_FLOAT16, DT_FLOAT32}))
.ATTR(keep_prob, Float, 1.0)
.OP_END_FACTORY_REG(BasicLSTMCellInputGrad)
/**
*@brief: Basic LSTM Cell backward calculation.Calculate the gradient of weight and bias.
*@par Inputs:
*three inputs:
*@li x:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li h:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li dgate:A 4D Tensor. Must be one of the following types: uint8. The format must be FRACTAL_NZ . \n
*@par Outputs:
*two outputs:
*@li dw:A 4D Tensor. Must be one of the following types: float16.
*@li db:A 4D Tensor. Must be one of the following types: float16, float32.
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(BasicLSTMCellWeightGrad)
.INPUT(x, TensorType({DT_FLOAT16}))
.INPUT(h, TensorType({DT_FLOAT16}))
.INPUT(dgate, TensorType({DT_FLOAT16}))
.OUTPUT(dw, TensorType({DT_FLOAT16}))
.OUTPUT(db, TensorType({DT_FLOAT16, DT_FLOAT32}))
.OP_END_FACTORY_REG(BasicLSTMCellWeightGrad)
/**
*@brief: Basic LSTM Cell backward calculation.Calculate the gradient of gates and cell state.
*@par Inputs:
*eight inputs:
*@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dht:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li it:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li jt:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li ft:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li ot:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ . \n
*@par Attributes:
*@li forget_bias:An integer identifying the forget bias in the op. Default to 1.
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported . \n
*@par Outputs:
*two outputs:
*@li dgate:A 4D Tensor. Must be one of the following types: float16.
*@li dct_1:A 4D Tensor. Must be one of the following types: float16, float32.
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(BasicLSTMCellCStateGrad)
.INPUT(c, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dht, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dct, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(it, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(jt, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(ft, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(ot, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(tanhct, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dgate, TensorType({DT_FLOAT16}))
.OUTPUT(dct_1, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(forget_bias, Float, 1.0)
.ATTR(activation, String, "tanh")
.OP_END_FACTORY_REG(BasicLSTMCellCStateGrad)
/**
*@brief: RNN operator.
*@par Inputs:
*eight inputs:
*@li x:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li cont:A 1D Tensor. Must be one of the following types: float16. The format must be ND.
*@li x_static:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li h_0:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li w_xh:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li w_sh:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li w_hh:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li w_ho:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li bias_h:A 1D Tensor. Must be one of the following types: float16, float32. The format must be ND.
*@li bias_o:A 1D Tensor. Must be one of the following types: float16, float32. The format must be ND . \n
*@par Attributes:
*@li expose_hidden:An bool identifying if expose the hidden state of last time step. Default to false.
*@li num_output:An integer identifying the number of output features. Default to 0 . \n
*@par Outputs:
*two outputs:
*@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li h_t:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(RNN)
.INPUT(x, TensorType({DT_FLOAT16}))
.INPUT(cont, TensorType({DT_FLOAT16}))
.OPTIONAL_INPUT(x_static, TensorType({DT_FLOAT16}))
.OPTIONAL_INPUT(h_0, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(w_xh, TensorType({DT_FLOAT16}))
.INPUT(bias_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(w_sh, TensorType({DT_FLOAT16}))
.INPUT(w_hh, TensorType({DT_FLOAT16}))
.INPUT(w_ho, TensorType({DT_FLOAT16}))
.INPUT(bias_o, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(o, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(h_t, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(num_output, Int, 0)
.ATTR(expose_hidden, Bool, false)
.OP_END_FACTORY_REG(RNN)
/**
*@brief: BasicRNNCell operator.
*@par Inputs:
*eight inputs:
*@li x:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li cont:A 1D Tensor. Must be one of the following types: float16. The format must be ND.
*@li w_xh_x_static:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li h_0:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li w_xh:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li w_hh:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li w_ho:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li bias_h:A 1D Tensor. Must be one of the following types: float16, float32. The format must be ND.
*@li bias_o:A 1D Tensor. Must be one of the following types: float16, float32. The format must be ND . \n
*@par Attributes:
*@li expose_hidden:An bool identifying if expose the hidden state of last time step. Default to false.
*@li num_output:An integer identifying the number of output features. Default to 0 . \n
*@par Outputs:
*two outputs:
*@li o_t:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li h_t:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(BasicRNNCell)
.INPUT(x, TensorType({DT_FLOAT16}))
.OPTIONAL_INPUT(cont, TensorType({DT_FLOAT16}))
.OPTIONAL_INPUT(w_xh_x_static, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(h_0, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(w_xh, TensorType({DT_FLOAT16}))
.INPUT(bias_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(w_hh, TensorType({DT_FLOAT16}))
.INPUT(w_ho, TensorType({DT_FLOAT16}))
.INPUT(bias_o, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(o_t, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(h_t, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(expose_hidden, Bool, false)
.ATTR(num_output, Int, 0)
.OP_END_FACTORY_REG(BasicRNNCell)
/**
*@brief DynamicGRU calculation.
*@par Inputs:
*seven inputs:
*@li x:Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li w:Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li b:Must be one of the following types: float16, float32. The format must be ND.
*@li cw:Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li cb:Must be one of the following types: float16, float32. The format must be ND.
*@li seq_length:Must be one of the following types: int32. The format must be ND.
*@li init_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Attributes:
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported.
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1.
*@li keep_prob:An float identifying the keep prob in the op. Default to 1.
*@li cell_clip:An float identifying the cell clip in the op. Default to -1.
*@li num_proj:An integer identifying the num projection in the op. Default to 0.
*@li time_major:An bool identifying the time major in the op. Default to true.
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported.
*@li is_training:An bool identifying is training in the op. Default to true.
*@par Outputs:
*five outputs:
*@li y:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li output_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li r:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li i:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li n:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(DynamicGRU)
.INPUT(x, TensorType({DT_FLOAT16}))
.INPUT(w, TensorType({DT_FLOAT16}))
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(cw, TensorType({DT_FLOAT16}))
.INPUT(cb, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32}))
.OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(r, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(i, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(n, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(direction, String, "UNIDIRECTIONAL")
.ATTR(cell_depth, Int, 1)
.ATTR(keep_prob, Float, 1.0)
.ATTR(cell_clip, Float, -1.0)
.ATTR(num_proj, Int, 0)
.ATTR(time_major, Bool, true)
.ATTR(activation, String, "tanh")
.ATTR(is_training, Bool, true)
.OP_END_FACTORY_REG(DynamicGRU)
/**
*@brief DynamicGRUV2 calculation.
*@par Inputs:
*seven inputs:
*@li x:Must be one of the following types: float16. The format must be FRACTAL_NZ.
*@li weight_input:Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li weight_hidden:Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li bias_input:Must be one of the following types: float16, float32. The format must be ND.
*@li bias_hidden:Must be one of the following types: float16, float32. The format must be ND.
*@li seq_length:Must be one of the following types: int32. The format must be ND.
*@li init_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Attributes:
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported.
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1.
*@li keep_prob:An float identifying the keep prob in the op. Default to 1.
*@li cell_clip:An float identifying the cell clip in the op. Default to -1.
*@li num_proj:An integer identifying the num projection in the op. Default to 0.
*@li time_major:An bool identifying the time major in the op. Default to true.
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported.
*@li gate_order:An string identifying the gate order in weight and bias. Default to "zrh". "rzh" is another option.
*@li reset_after:An bool identifying whether to apply reset gate after matrix multiplication. Default to true.
*@li is_training:An bool identifying is training in the op. Default to true.
*@par Outputs:
*six outputs:
*@li y:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li output_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li update:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li reset:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li hidden_new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(DynamicGRUV2)
.INPUT(x, TensorType({DT_FLOAT16}))
.INPUT(weight_input, TensorType({DT_FLOAT16}))
.INPUT(weight_hidden, TensorType({DT_FLOAT16}))
.OPTIONAL_INPUT(bias_input, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(bias_hidden, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32}))
.OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(update, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(reset, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(new, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(hidden_new, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(direction, String, "UNIDIRECTIONAL")
.ATTR(cell_depth, Int, 1)
.ATTR(keep_prob, Float, 1.0)
.ATTR(cell_clip, Float, -1.0)
.ATTR(num_proj, Int, 0)
.ATTR(time_major, Bool, true)
.ATTR(activation, String, "tanh")
.ATTR(gate_order, String, "zrh")
.ATTR(reset_after, Bool, true)
.ATTR(is_training, Bool, true)
.OP_END_FACTORY_REG(DynamicGRUV2)
/**
*@brief DynamicGRUV2Hidden calculation.
*@par Inputs:
*five inputs:
*@li x_weight_input:Must be one of the following types: float32. The format must be FRACTAL_NZ.
*@li weight_hidden:Must be one of the following types: float16. The format must be FRACTAL_Z.
*@li bias_hidden:Must be one of the following types: float16, float32. The format must be ND.
*@li seq_length:Must be one of the following types: int32. The format must be ND.
*@li init_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Attributes:
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL".
Only UNIDIRECTIONAL is currently supported.
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1.
*@li keep_prob:An float identifying the keep prob in the op. Default to 1.
*@li cell_clip:An float identifying the cell clip in the op. Default to -1.
*@li num_proj:An integer identifying the num projection in the op. Default to 0.
*@li time_major:An bool identifying the time major in the op. Default to true.
*@li activation:An string identifying the type of activation function in the op. Default to "tanh".
Only tanh is currently supported.
*@li gate_order:An string identifying the gate order in weight and bias. Default to "zrh". "rzh" is another option.
*@li reset_after:An bool identifying whether to apply reset gate after matrix multiplication. Default to true.
*@li is_training:An bool identifying is training in the op. Default to true.
*@par Outputs:
*six outputs:
*@li y:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li output_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li update:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li reset:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li hidden_new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(DynamicGRUV2Hidden)
.INPUT(x_weight_input, TensorType({DT_FLOAT32}))
.INPUT(weight_hidden, TensorType({DT_FLOAT16}))
.OPTIONAL_INPUT(bias_hidden, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32}))
.OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(update, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(reset, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(new, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(hidden_new, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(direction, String, "UNIDIRECTIONAL")
.ATTR(cell_depth, Int, 1)
.ATTR(keep_prob, Float, 1.0)
.ATTR(cell_clip, Float, -1.0)
.ATTR(num_proj, Int, 0)
.ATTR(time_major, Bool, true)
.ATTR(activation, String, "tanh")
.ATTR(gate_order, String, "zrh")
.ATTR(reset_after, Bool, true)
.ATTR(is_training, Bool, true)
.OP_END_FACTORY_REG(DynamicGRUV2Hidden)
/**
*@brief: DynamicGRUV2Grad calculation.
*@par Inputs:
*fourteen inputs: \n
*@li x:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li weight_input:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li weight_hidden:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li y:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li init_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dy:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dh:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li update:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li reset:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li new:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li hidden_new:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li seq_length:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li mask:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Attributes:
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported.
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1.
*@li keep_prob:An float identifying the keep prob in the op. Default to 1.
*@li cell_clip:An float identifying the cell clip in the op. Default to -1.
*@li num_proj:An integer identifying the num projection in the op. Default to 0.
*@li time_major:An bool identifying the time major in the op. Default to true.
*@li gate_order:An string identifying the gate order in weight and bias. Default to "zrh". "rzh" is another option.
*@li reset_after:An bool identifying whether to apply reset gate after matrix multiplication. Default to true.
*@par Outputs:
*six outputs: \n
*@li dw_input:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dw_hidden:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li db_input:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li db_hidden:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dx:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dh_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(DynamicGRUV2Grad)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(weight_input, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(weight_hidden, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(h, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dy, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dh, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(update, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(reset, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(new, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(hidden_new, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32}))
.OPTIONAL_INPUT(mask, TensorType({DT_UINT8}))
.OUTPUT(dw_input, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dw_hidden, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(db_input, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(db_hidden, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dx, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dh_prev, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(direction, String, "UNIDIRECTIONAL")
.ATTR(cell_depth, Int, 0)
.ATTR(keep_prob, Float, -1.0)
.ATTR(cell_clip, Float, -1.0)
.ATTR(num_proj, Int, 0)
.ATTR(time_major, Bool, true)
.ATTR(gate_order, String, "zrh")
.ATTR(reset_after, Bool, true)
.OP_END_FACTORY_REG(DynamicGRUV2Grad)
/**
*@brief: GRUV2HiddenGrad calculation.
*@par Inputs:
*nine inputs: \n
*@li dh_pre_t:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li init_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dy:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dh:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li update:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li reset:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li new:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li hidden_new:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Attributes:
*@li t_state:An Int identifying the current t state. Default to [0, 4].
*@li gate_order:An string identifying the gate order in weight and bias. Default to "zrh". "rzh" is another option.
*@par Outputs:
*three outputs: \n
*@li dh_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dgate_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li dnt_x:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@par Restrictions:
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
*/
REG_OP(GRUV2HiddenGradCell)
.INPUT(dh_pre_t, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(h, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dy, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(dh, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(update, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(reset, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(new, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(hidden_new, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dh_prev, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dgate_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(dnt_x, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(t_state, Int, 0)
.ATTR(gate_order, String, "zrh")
.OP_END_FACTORY_REG(GRUV2HiddenGradCell)
/**
* @brief Calculates the reversed outputs of the function "embedding". \n
* @par Inputs:
* Two inputs, including:
* @li grad: A mutable Tensor of word grad. Must be one of the following types:
* float32.
* @li indices: A mutable word index Tensor of the int32 type.\n
* @par Attributes:
* @li num_weights: An int attr which use to judge how many words in dict. \n
* @li padding_idx: An int attr judge which word to fill zeros. Defaults to "-1". \n
* @li scale_grad_by_freq: An optional bool. Defaults to "False".
* If "True", "grad_weight" will be scale by word_frequency.
* If "False", "grad_weight" will not be scale by word_frequency. \n
* @par Outputs:
* @li grad_weight: A mutable output Tensor of new word grad has the same type as "grads". \n
* @par Third-party framework compatibility
* Compatible with the Pytorch operator EmbeddingDenseGrad.
*/
REG_OP(EmbeddingDenseGrad)
.INPUT(grad, TensorType({ DT_FLOAT32 })) /* "First operand." */
.INPUT(indices, TensorType({ DT_INT32 })) /* "Second operand." */
.OUTPUT(y, TensorType({ DT_FLOAT32 })) /* "Result, has same element type as two inputs" */
.REQUIRED_ATTR(num_weights, Int)
.ATTR(padding_idx, Int, -1)
.ATTR(scale_grad_by_freq, Bool, false)
.OP_END_FACTORY_REG(EmbeddingDenseGrad)
/**
*@brief CommonLSTM calculation.
*@par Inputs:
*eight inputs: \n
*@li x:Each time step is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li w:Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
*@li r:Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
*@li b:An optional input. Each direction is a 1D Tensor. Must be one of the following types: float16, float32. The format must be ND.
*@li sequence_lens:An optional input. A 1D Tensor.Must be one of the following types: int32. The format must be ND.
*@li initial_h:An optional input. Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li initial_c:An optional input. Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li p:An optional input. Each direction is a 1D Tensor.Must be one of the following types: float16, float32. The format must be ND.
*@par Attributes:
*@li activation_alpha:Optional scaling values used by some activation functions. Empty is currently supported.
*@li activation_beta:Optional scaling values used by some activation functions. Empty is currently supported.
*@li activations:The list of activation functions. Empty is currently supported.
*@li clip:An float identifying the cell clip in the op. Default to -1.
*@li direction:Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward(default), reverse, or bidirectional.
*@li hidden_size:Number of neurons in the hidden layer. Reserved.
*@li input_forget:Couple the input and forget gates if 1. Reserved.
*@par Outputs:
*three outputs: \n
*@li y:First dimension is time step, second dimension is direction, others is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li y_h:Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*@li y_c:Each direction is a 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
*/
REG_OP(CommonLSTM)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(r, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(sequence_lens, TensorType({DT_INT32}))
.OPTIONAL_INPUT(initial_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(initial_c, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(p, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(y_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(y_c, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(activation_alpha, ListFloat, {})
.ATTR(activation_beta, ListFloat, {})
.ATTR(activations, ListString, {})
.ATTR(clip, Float, -1.0)
.ATTR(direction, String, "forward")
.REQUIRED_ATTR(hidden_size, Int)
.ATTR(input_forget, Int, 0)
.OP_END_FACTORY_REG(CommonLSTM)
/**
* @brief Common GRU calculation.
* @par Inputs:
* Eight inputs, including:
* @li x: The input sequences packed (and pontentially padded) into on 3D Tesnor(float16). The format must be FRACTAL_NZ
* @li w: The weight tensor for the gates is 3D Tensor(float16). The format must be FRACTAL_Z
* @li r: The recurrence weight tesnor is 3D Tensor(float16). The format must be FRACTAL_Z
* @li b: The bias tensor for the gates. The format must be ND
* @li sequence_lens: Optional tensor specifying lengths of sequences(int32). The format must be ND
* @li init_h: Optional initial value of the hidden(float16,float32). The format must be FRACTAL_NZ
* @par Attributes:
* @li activation_alpha: Optional scaling values used by some activation functions. \n
* @li activation_beta: Optional scaling values used by some activation functions. \n
* @li activations: A list of 2 (or 4 if bidirectional) activation functions for update, reset, and hidden gates. \n
* @li clip: Cell clip threshold. \n
* @li direction: Specify if the RNN is forward, reverse, or bidirectional. \n
* @li hidden_size: Number of neurons in the hidden layer. \n
* @li linear_before_reset: When computing the output of the hidden gate, apply the linear transformation before multiplying by the output of the reset gate. \n
* @par Outputs:
* @li y: A Tensor that concats all the intermediate output values of the hidden(float16,float32). The format must be FRACTAL_NZ
* @li y_h: The last output value of the hidden(float16,float32). The format must be FRACTAL_NZ
*/
REG_OP(CommonGRU)
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT}))
.INPUT(r, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
.OPTIONAL_INPUT(sequence_lens, TensorType({DT_INT32}))
.OPTIONAL_INPUT(initial_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
.OUTPUT(y_h, TensorType({DT_FLOAT16, DT_FLOAT}))
.ATTR(activation_alpha, ListFloat, {})
.ATTR(activation_beta , ListFloat, {})
.ATTR(activations , ListString, {})
.ATTR(clip, Float, -1.0)
.ATTR(direction, String, "forward")
.REQUIRED_ATTR(hidden_size, Int)
.ATTR(linear_before_reset , Int, 0)
.OP_END_FACTORY_REG(CommonGRU)
} // namespace ge
#endif // OPS_BUILT_IN_OP_PROTO_INC_RNN_H_