|
|
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
import mindspore.context as context
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor, Parameter
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
|
|
|
|
class AssignAdd(nn.Cell):
|
|
|
|
def __init__(self, value):
|
|
|
|
super(AssignAdd, self).__init__()
|
|
|
|
self.var = Parameter(value, name="var")
|
|
|
|
self.add = P.AssignAdd()
|
|
|
|
|
|
|
|
def construct(self, y):
|
|
|
|
res = self.add(self.var, y)
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_assign_add():
|
|
|
|
expect1 = np.array([[[[0, 2, 4.],
|
|
|
|
[6, 8, 10.],
|
|
|
|
[12, 14, 16.]],
|
|
|
|
[[18, 20, 22.],
|
|
|
|
[24, 26, 28.],
|
|
|
|
[30, 32, 34.]],
|
|
|
|
[[36, 38, 40.],
|
|
|
|
[42, 44, 46.],
|
|
|
|
[48, 50, 52.]]]])
|
|
|
|
expect2 = np.array([[[[0, 3, 6],
|
|
|
|
[9, 12, 15],
|
|
|
|
[18, 21, 24]],
|
|
|
|
[[27, 30, 33],
|
|
|
|
[36, 39, 42],
|
|
|
|
[45, 48, 51]],
|
|
|
|
[[54, 57, 60],
|
|
|
|
[63, 66, 69],
|
|
|
|
[72, 75, 78]]]])
|
|
|
|
x1 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
|
|
|
|
y1 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
|
|
|
|
|
|
|
|
x2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
|
|
|
|
y2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
|
|
|
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
|
|
|
add = AssignAdd(x1)
|
|
|
|
output1 = add(y1)
|
|
|
|
assert (output1.asnumpy() == expect1).all()
|
|
|
|
add = AssignAdd(output1)
|
|
|
|
output2 = add(y1)
|
|
|
|
assert (output2.asnumpy() == expect2).all()
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
|
|
|
add = AssignAdd(x2)
|
|
|
|
output1 = add(y2)
|
|
|
|
assert (output1.asnumpy() == expect1).all()
|
|
|
|
add = AssignAdd(output1)
|
|
|
|
output2 = add(y2)
|
|
|
|
assert (output2.asnumpy() == expect2).all()
|