You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_text_basic_tokenizer.py

140 lines
6.9 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing BasicTokenizer op in DE
"""
import numpy as np
import mindspore.dataset as ds
from mindspore import log as logger
import mindspore.dataset.text as text
BASIC_TOKENIZER_FILE = "../data/dataset/testTokenizerData/basic_tokenizer.txt"
test_paras = [
dict(
first=1,
last=6,
expected_tokens=
[['Welcome', 'to', 'Beijing', '', '', '', '', ''],
['', '', '', '', '', '', '', '', '', '', '', '', '', '', ''],
['😀', '', '', '😃', '', '', '😄', '', '', '😁', '', ''],
['', '', '', '1368', '', '1644', '', '', '', '', '',
'', '1644', '', '1911', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', ''],
['', '', '', '1368', '-', '1644', '', '', '', '',
'', '1644', '-', '1911', '', '', '', '', '', '', '',
'', '', '', '', '', '', 'における', '', '', 'の2つの', '', '', 'でした'],
['명나라', '(', '1368', '-', '1644', ')', '', '청나라', '(', '1644', '-', '1911', ')', '',
'중국', '봉건', '왕조의', '역사에서', '마지막', '', '왕조였다']],
expected_offsets_start=[[0, 8, 11, 18, 21, 24, 27, 30],
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42],
[0, 4, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37],
[0, 3, 6, 9, 13, 16, 20, 23, 26, 29, 32, 35, 38, 42, 45, 49,
52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100],
[0, 3, 6, 9, 13, 14, 18, 21, 24, 27, 30, 33, 37, 38, 42, 45, 48, 51,
54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 93, 96, 99, 109, 112, 115],
[0, 10, 11, 15, 16, 20, 21, 25, 35, 36, 40, 41, 45, 46, 50, 57, 64, 74, 87, 97, 101]],
expected_offsets_limit=[[7, 10, 18, 21, 24, 27, 30, 33],
[3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45],
[4, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37, 40],
[3, 6, 9, 13, 16, 20, 23, 26, 29, 32, 35, 38, 42, 45, 49, 52, 55, 58,
61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103],
[3, 6, 9, 13, 14, 18, 21, 24, 27, 30, 33, 37, 38, 42, 45, 48, 51, 54,
57, 60, 63, 66, 69, 72, 75, 78, 81, 93, 96, 99, 109, 112, 115, 124],
[9, 11, 15, 16, 20, 21, 24, 34, 36, 40, 41, 45, 46, 49, 56, 63, 73, 86, 96, 100, 113]]
),
dict(
first=7,
last=7,
expected_tokens=[['this', 'is', 'a', 'funky', 'string']],
expected_offsets_start=[[0, 5, 8, 10, 16]],
expected_offsets_limit=[[4, 7, 9, 15, 22]],
lower_case=True
),
]
def check_basic_tokenizer_default(first, last, expected_tokens, expected_offsets_start, expected_offsets_limit,
lower_case=False, keep_whitespace=False,
normalization_form=text.utils.NormalizeForm.NONE, preserve_unused_token=False):
dataset = ds.TextFileDataset(BASIC_TOKENIZER_FILE, shuffle=False)
if first > 1:
dataset = dataset.skip(first - 1)
if last >= first:
dataset = dataset.take(last - first + 1)
basic_tokenizer = text.BasicTokenizer(lower_case=lower_case,
keep_whitespace=keep_whitespace,
normalization_form=normalization_form,
preserve_unused_token=preserve_unused_token)
dataset = dataset.map(operations=basic_tokenizer)
count = 0
for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
token = text.to_str(i['text'])
logger.info("Out:", token)
logger.info("Exp:", expected_tokens[count])
np.testing.assert_array_equal(token, expected_tokens[count])
count = count + 1
def check_basic_tokenizer_with_offsets(first, last, expected_tokens, expected_offsets_start, expected_offsets_limit,
lower_case=False, keep_whitespace=False,
normalization_form=text.utils.NormalizeForm.NONE, preserve_unused_token=False):
dataset = ds.TextFileDataset(BASIC_TOKENIZER_FILE, shuffle=False)
if first > 1:
dataset = dataset.skip(first - 1)
if last >= first:
dataset = dataset.take(last - first + 1)
basic_tokenizer = text.BasicTokenizer(lower_case=lower_case,
keep_whitespace=keep_whitespace,
normalization_form=normalization_form,
preserve_unused_token=preserve_unused_token,
with_offsets=True)
4 years ago
dataset = dataset.map(operations=basic_tokenizer, input_columns=['text'],
output_columns=['token', 'offsets_start', 'offsets_limit'],
column_order=['token', 'offsets_start', 'offsets_limit'])
count = 0
for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
token = text.to_str(i['token'])
logger.info("Out:", token)
logger.info("Exp:", expected_tokens[count])
np.testing.assert_array_equal(token, expected_tokens[count])
np.testing.assert_array_equal(i['offsets_start'], expected_offsets_start[count])
np.testing.assert_array_equal(i['offsets_limit'], expected_offsets_limit[count])
count = count + 1
def test_basic_tokenizer_with_offsets():
"""
Test BasicTokenizer
"""
for paras in test_paras:
check_basic_tokenizer_with_offsets(**paras)
def test_basic_tokenizer_default():
"""
Test BasicTokenizer
"""
for paras in test_paras:
check_basic_tokenizer_default(**paras)
if __name__ == '__main__':
test_basic_tokenizer_default()
test_basic_tokenizer_with_offsets()