You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/summary/test_gpu_summary.py

111 lines
3.6 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
5 years ago
import numpy as np
import os
5 years ago
import pytest
import random
5 years ago
import shutil
import time
import mindspore.context as context
5 years ago
import mindspore.nn as nn
from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P
from mindspore.train.summary.summary_record import SummaryRecord
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
CUR_DIR = os.getcwd()
SUMMARY_DIR_ME = CUR_DIR + "/test_me_summary_event_file/"
SUMMARY_DIR_ME_TEMP = CUR_DIR + "/test_me_temp_summary_event_file/"
def clean_environment_file(srcDir):
if os.path.exists(srcDir):
ls = os.listdir(srcDir)
for line in ls:
filePath = os.path.join(srcDir, line)
os.remove(filePath)
os.removedirs(srcDir)
def save_summary_events_file(srcDir, desDir):
if not os.path.exists(desDir):
print("-- create desDir")
os.makedirs(desDir)
ls = os.listdir(srcDir)
for line in ls:
filePath = os.path.join(srcDir, line)
if os.path.isfile(filePath):
print("-- move events file : {}".format(filePath))
shutil.copy(filePath, desDir)
os.remove(filePath)
os.removedirs(srcDir)
class SummaryNet(nn.Cell):
def __init__(self, tag_tuple=None, scalar=1):
super(SummaryNet, self).__init__()
self.summary_s = P.ScalarSummary()
self.summary_i = P.ImageSummary()
self.summary_t = P.TensorSummary()
self.histogram_summary = P.HistogramSummary()
self.add = P.TensorAdd()
self.tag_tuple = tag_tuple
self.scalar = scalar
def construct(self, x, y):
self.summary_i("image", x)
self.summary_s("x1", x)
z = self.add(x, y)
self.summary_t("z1", z)
self.histogram_summary("histogram", z)
return z
def train_summary_record_scalar_for_1(test_writer, steps, fwd_x, fwd_y):
net = SummaryNet()
out_me_dict = {}
for i in range(0, steps):
x = Tensor(np.array([1.1 + random.uniform(1, 10)]).astype(np.float32))
y = Tensor(np.array([1.2 + random.uniform(1, 10)]).astype(np.float32))
out_put = net(x, y)
test_writer.record(i)
print("-----------------output: %s-------------\n", out_put.asnumpy())
out_me_dict[i] = out_put.asnumpy()
return out_me_dict
def me_scalar_summary(steps, tag=None, value=None):
with SummaryRecord(SUMMARY_DIR_ME_TEMP) as test_writer:
x = Tensor(np.array([1.1]).astype(np.float32))
y = Tensor(np.array([1.2]).astype(np.float32))
out_me_dict = train_summary_record_scalar_for_1(test_writer, steps, x, y)
return out_me_dict
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scalarsummary_scalar1_step10_summaryrecord1():
clean_environment_file(SUMMARY_DIR_ME_TEMP)
output_dict = me_scalar_summary(10)
print("test_scalarsummary_scalar1_step10_summaryrecord1 \n", output_dict)
save_summary_events_file(SUMMARY_DIR_ME_TEMP, SUMMARY_DIR_ME)
clean_environment_file(SUMMARY_DIR_ME)